Properties

Label 38T46
38T46 1 7 1->7 27 1->27 2 35 2->35 3 16 3->16 24 3->24 4 11 4->11 32 4->32 5 6 5->6 21 5->21 6->1 29 6->29 15 7->15 37 7->37 8 10 8->10 26 8->26 9 9->5 34 9->34 19 10->19 23 10->23 14 11->14 31 11->31 12 12->9 20 12->20 13 13->4 28 13->28 18 14->18 36 14->36 15->13 25 15->25 16->8 33 16->33 17 17->3 22 17->22 18->17 30 18->30 19->12 38 19->38 20->18 21->14 21->28 22->10 22->36 23->6 23->25 24->2 24->33 25->17 25->22 26->13 26->30 27->9 27->38 28->5 28->27 29->1 29->35 30->16 30->24 31->12 31->32 32->8 32->21 33->4 33->29 34->19 34->37 35->15 35->26 36->11 36->34 37->23 38->3 38->31
Degree $38$
Order $116964$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{19}^2:(C_9\times D_{18})$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(38, 46);
 

Group invariants

Abstract group:  $C_{19}^2:(C_9\times D_{18})$
Copy content magma:IdentifyGroup(G);
 
Order:  $116964=2^{2} \cdot 3^{4} \cdot 19^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $38$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $46$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,7,15,13,4,11,14,18,17,3,16,8,10,19,12,9,5,6)(21,28,27,38,31,32)(22,36,34,37,23,25)(24,33,29,35,26,30)$, $(1,27,9,34,19,38,3,24,2,35,15,25,17,22,10,23,6,29)(4,32,8,26,13,28,5,21,14,36,11,31,12,20,18,30,16,33)(7,37)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$3$:  $C_3$
$4$:  $C_2^2$
$6$:  $S_3$, $C_6$ x 3
$9$:  $C_9$
$12$:  $D_{6}$, $C_6\times C_2$
$18$:  $S_3\times C_3$, $D_{9}$, $C_{18}$ x 3
$36$:  $C_6\times S_3$, $D_{18}$, 36T2
$54$:  $C_9\times S_3$, 18T19
$108$:  36T63, 36T69
$162$:  18T74
$324$:  36T461

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 19: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

121 x 121 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed