Show commands: Magma
Group invariants
| Abstract group: | $C_{19}^2:(C_9\times D_{18})$ |
| |
| Order: | $116964=2^{2} \cdot 3^{4} \cdot 19^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $38$ |
| |
| Transitive number $t$: | $46$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,7,15,13,4,11,14,18,17,3,16,8,10,19,12,9,5,6)(21,28,27,38,31,32)(22,36,34,37,23,25)(24,33,29,35,26,30)$, $(1,27,9,34,19,38,3,24,2,35,15,25,17,22,10,23,6,29)(4,32,8,26,13,28,5,21,14,36,11,31,12,20,18,30,16,33)(7,37)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$, $C_6$ x 3 $9$: $C_9$ $12$: $D_{6}$, $C_6\times C_2$ $18$: $S_3\times C_3$, $D_{9}$, $C_{18}$ x 3 $36$: $C_6\times S_3$, $D_{18}$, 36T2 $54$: $C_9\times S_3$, 18T19 $108$: 36T63, 36T69 $162$: 18T74 $324$: 36T461 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
121 x 121 character table
Regular extensions
Data not computed