Properties

Label 38T42
38T42 1 27 1->27 30 1->30 2 2->27 38 2->38 3 24 3->24 3->30 4 21 4->21 22 4->22 5 33 5->33 37 5->37 6 25 6->25 34 6->34 7 31 7->31 36 7->36 8 28 8->28 8->28 9 20 9->20 9->25 10 10->22 10->31 11 23 11->23 11->38 12 12->34 35 12->35 13 26 13->26 32 13->32 14 29 14->29 14->37 15 15->26 15->29 16 16->21 16->23 17 17->20 17->32 18 18->24 18->36 19 19->33 19->35 20->13 20->15 21->10 21->13 22->7 22->11 23->4 23->9 24->1 24->7 25->5 25->17 26->3 26->14 27->1 27->11 28->18 29->5 29->16 30->2 30->14 31->12 31->18 32->10 32->15 33->8 33->12 34->9 35->4 35->6 36->2 36->3 37->19 37->19 38->16 38->17
Degree $38$
Order $58482$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{19}^2:(C_9\times D_9)$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(38, 42);
 

Group invariants

Abstract group:  $C_{19}^2:(C_9\times D_9)$
Copy content magma:IdentifyGroup(G);
 
Order:  $58482=2 \cdot 3^{4} \cdot 19^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $38$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $42$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,30,14,29,16,23,9,25,5,37,19,33,8,28,18,36,2,27)(3,24,7,31,12,35,4,21,13,32,10,22,11,38,17,20,15,26)(6,34)$, $(1,27,11,23,4,22,7,36,3,30,2,38,16,21,10,31,18,24)(5,33,12,34,9,20,13,26,14,37,19,35,6,25,17,32,15,29)(8,28)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $S_3$, $C_6$
$9$:  $C_9$
$18$:  $S_3\times C_3$, $D_{9}$, $C_{18}$
$54$:  $C_9\times S_3$, 18T19
$162$:  18T74

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 19: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

77 x 77 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed