Properties

Label 38T19
38T19 1 26 1->26 31 1->31 2 24 2->24 33 2->33 3 22 3->22 35 3->35 4 20 4->20 37 4->37 5 5->20 5->37 6 6->22 6->35 7 7->24 7->33 8 8->26 8->31 9 28 9->28 29 9->29 10 27 10->27 30 10->30 11 25 11->25 32 11->32 12 23 12->23 34 12->34 13 21 13->21 36 13->36 14 38 14->38 14->38 15 15->21 15->36 16 16->23 16->34 17 17->25 17->32 18 18->27 18->30 19 19->28 19->29 20->11 20->19 21->15 22->11 22->19 23->4 23->7 24->3 24->8 25->12 25->18 26->14 26->16 27->1 27->10 28->5 28->6 29->2 30->13 30->17 31->13 31->17 32->2 32->9 33->5 33->6 34->1 34->10 35->14 35->16 36->12 36->18 37->3 37->8 38->4 38->7
Degree $38$
Order $4332$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $D_{19}^2:C_3$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(38, 19);
 

Group invariants

Abstract group:  $D_{19}^2:C_3$
Copy content magma:IdentifyGroup(G);
 
Order:  $4332=2^{2} \cdot 3 \cdot 19^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $38$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $19$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,26,16,34,10,27)(2,24,8,31,17,32)(3,22,19,28,5,37)(4,20,11,25,12,23)(6,35,14,38,7,33)(9,29)(13,21,15,36,18,30)$, $(1,31,13,36,12,34)(2,33,5,20,19,29)(3,35,16,23,7,24)(4,37,8,26,14,38)(6,22,11,32,9,28)(10,30,17,25,18,27)(15,21)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$3$:  $C_3$
$4$:  $C_2^2$
$6$:  $C_6$ x 3
$12$:  $C_6\times C_2$
$114$:  $C_{19}:C_{6}$ x 2
$228$:  38T6 x 2

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 19: None

Low degree siblings

38T19 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

51 x 51 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed