Label 38T19
Degree $38$
Order $4332$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no

Learn more about

Group action invariants

Degree $n$:  $38$
Transitive number $t$:  $19$
Parity:  $-1$
Primitive:  no
Nilpotency class:  $-1$ (not nilpotent)
$|\Aut(F/K)|$:  $1$
Generators:  (1,26,16,34,10,27)(2,24,8,31,17,32)(3,22,19,28,5,37)(4,20,11,25,12,23)(6,35,14,38,7,33)(9,29)(13,21,15,36,18,30), (1,31,13,36,12,34)(2,33,5,20,19,29)(3,35,16,23,7,24)(4,37,8,26,14,38)(6,22,11,32,9,28)(10,30,17,25,18,27)(15,21)

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$ x 3
$3$:  $C_3$
$4$:  $C_2^2$
$6$:  $C_6$ x 3
$12$:  $C_6\times C_2$
$114$:  $C_{19}:C_{6}$ x 2
$228$:  38T6 x 2

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 19: None

Low degree siblings

38T19 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 51 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4332=2^{2} \cdot 3 \cdot 19^{2}$
Cyclic:  no
Abelian:  no
Solvable:  yes
GAP id:  not available
Character table: not available.