Label 38T15
Order \(2888\)
n \(38\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $38$
Transitive number $t$ :  $15$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,7,10,13,16,19,3,6,9,12,15,18,2,5,8,11,14,17)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(34,38)(35,37), (1,20,19,24)(2,35,18,28)(3,31,17,32)(4,27,16,36)(5,23,15,21)(6,38,14,25)(7,34,13,29)(8,30,12,33)(9,26,11,37)(10,22)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 19: None

Low degree siblings


Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 77 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2888=2^{3} \cdot 19^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.