Properties

Label 38T15
38T15 1 4 1->4 20 1->20 2 5 2->5 35 2->35 3 6 3->6 31 3->31 7 4->7 27 4->27 8 5->8 23 5->23 9 6->9 38 6->38 10 7->10 34 7->34 11 8->11 30 8->30 12 9->12 26 9->26 13 10->13 22 10->22 14 11->14 37 11->37 15 12->15 33 12->33 16 13->16 29 13->29 17 14->17 25 14->25 18 15->18 21 15->21 19 16->19 36 16->36 17->1 32 17->32 18->2 28 18->28 19->3 24 19->24 20->19 20->33 21->5 21->32 22->31 23->15 23->30 24->1 24->29 25->6 25->28 26->11 26->27 27->16 28->2 29->7 30->12 31->17 32->3 33->8 34->13 34->38 35->18 35->37 36->4 37->9 38->14
Degree $38$
Order $2888$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $D_{19}\wr C_2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(38, 15);
 

Group invariants

Abstract group:  $D_{19}\wr C_2$
Copy content magma:IdentifyGroup(G);
 
Order:  $2888=2^{3} \cdot 19^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $38$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $15$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,4,7,10,13,16,19,3,6,9,12,15,18,2,5,8,11,14,17)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(34,38)(35,37)$, $(1,20,19,24)(2,35,18,28)(3,31,17,32)(4,27,16,36)(5,23,15,21)(6,38,14,25)(7,34,13,29)(8,30,12,33)(9,26,11,37)(10,22)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$8$:  $D_{4}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 19: None

Low degree siblings

38T15

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

77 x 77 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed