Show commands: Magma
Group invariants
Abstract group: | $C_2\times \He_3^2:D_4$ |
| |
Order: | $11664=2^{4} \cdot 3^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $9215$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,8,17,6,12,16)(2,7,18,5,11,15)(3,10,13,4,9,14)(19,33)(20,34)(21,32)(22,31)(23,35)(24,36)(25,27)(26,28)$, $(1,34,3,36,5,32,2,33,4,35,6,31)(7,25,16,24,10,27,13,22,12,30,18,19)(8,26,15,23,9,28,14,21,11,29,17,20)$, $(1,6)(2,5)(3,4)(7,18)(8,17)(9,14)(10,13)(11,15)(12,16)(19,28,36,24,26,33)(20,27,35,23,25,34)(21,30,32)(22,29,31)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_4\times C_2$ $72$: $C_3^2:D_4$ x 4 $144$: 12T77 x 4 $648$: 12T172 $1296$: 24T2862 $1944$: 27T403, 27T404 $5832$: 18T509 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $C_3^2:D_4$
Degree 9: None
Degree 12: 12T78
Degree 18: 18T509
Low degree siblings
36T9214 x 4, 36T9215 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
82 x 82 character table
Regular extensions
Data not computed