Show commands: Magma
Group invariants
| Abstract group: | $C_2^{16}.\SL(2,8).(C_3\times S_3)$ |
| |
| Order: | $594542592=2^{20} \cdot 3^{4} \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $89207$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,20,27,14,11,35,22,32,8,4,19,25,15,12,33,23,31,6)(2,18,26,13,9,34,21,30,5,3,17,28,16,10,36,24,29,7)$, $(1,23,16,33,29,28,9,4,24,13,34,32,27,12,3,21,14,35,31,26,11,2,22,15,36,30,25,10)(5,6,7,8)(17,19)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $1512$: $\mathrm{P}\Gamma\mathrm{L}(2,8)$ $3024$: 18T427 $9072$: 27T797 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Degree 9: $\mathrm{P}\Gamma\mathrm{L}(2,8)$
Degree 12: None
Degree 18: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed