Show commands: Magma
Group invariants
Abstract group: | $C_3^5.S_3^2$ |
| |
Order: | $8748=2^{2} \cdot 3^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $7547$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $3$ |
| |
Generators: | $(1,23,15,36,26,11,2,24,13,35,25,12,3,22,14,34,27,10)(4,33,29,19,16,8,6,32,30,20,17,9,5,31,28,21,18,7)$, $(1,19,3,20,2,21)(4,12)(5,10)(6,11)(7,25,8,26,9,27)(13,33,15,32,14,31)(16,24,17,23,18,22)(28,35,30,34,29,36)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$ x 3, $C_6$ x 3 $12$: $D_{6}$ x 3, $C_6\times C_2$ $18$: $S_3\times C_3$ x 3 $36$: $S_3^2$ x 3, $C_6\times S_3$ x 3 $108$: $C_3^2 : D_{6} $ x 3, 12T70 x 3, 12T71 $324$: 12T130, 18T118 x 3, 27T120 $972$: 27T264, 27T265 $2916$: 18T416 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $S_3^2$
Degree 9: None
Degree 12: $S_3^2$
Degree 18: None
Low degree siblings
36T7544 x 3, 36T7547 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
96 x 96 character table
Regular extensions
Data not computed