Show commands: Magma
Group invariants
Abstract group: | $C_3^5.S_3^2$ |
| |
Order: | $8748=2^{2} \cdot 3^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $7544$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $3$ |
| |
Generators: | $(1,20,3,21,2,19)(4,24,6,23,5,22)(7,25)(8,26)(9,27)(10,30,12,28,11,29)(13,31,14,32,15,33)(16,35,17,36,18,34)$, $(1,17,26,5,14,28,2,16,25,6,15,30,3,18,27,4,13,29)(7,12,20,24,33,35,8,11,21,23,32,36,9,10,19,22,31,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$ x 3, $C_6$ x 3 $12$: $D_{6}$ x 3, $C_6\times C_2$ $18$: $S_3\times C_3$ x 3 $36$: $S_3^2$ x 3, $C_6\times S_3$ x 3 $108$: $C_3^2 : D_{6} $ x 3, 12T70 x 3, 12T71 $324$: 12T130, 18T118 x 3, 27T120 $972$: 27T264, 27T265 $2916$: 18T416 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $S_3^2$
Degree 9: None
Degree 12: $S_3^2$
Degree 18: None
Low degree siblings
36T7544 x 2, 36T7547 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
96 x 96 character table
Regular extensions
Data not computed