Show commands: Magma
Group invariants
| Abstract group: | $C_3^2:D_6$ |
| |
| Order: | $108=2^{2} \cdot 3^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $73$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $12$ |
| |
| Generators: | $(1,3)(2,4)(5,34)(6,33)(7,35)(8,36)(9,24,15,31,17,25)(10,23,16,32,18,26)(11,22,14,29,19,27)(12,21,13,30,20,28)$, $(1,15,29,2,16,30)(3,13,32,4,14,31)(5,19,24,6,20,23)(7,17,22,8,18,21)(9,27,34,10,28,33)(11,25,35,12,26,36)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$, $C_6$ x 3 $12$: $D_{6}$, $C_6\times C_2$ $18$: $S_3\times C_3$ $36$: $C_6\times S_3$ $54$: $C_3^2 : C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 9: $C_3^2 : C_6$
Degree 12: $D_6$
Low degree siblings
18T41 x 2, 18T42 x 2, 36T71, 36T75Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
| 2B | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 3)( 2, 4)( 5,34)( 6,33)( 7,35)( 8,36)( 9,31)(10,32)(11,29)(12,30)(13,28)(14,27)(15,25)(16,26)(17,24)(18,23)(19,22)(20,21)$ |
| 2C | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,36)( 2,35)( 3,34)( 4,33)( 5, 7)( 6, 8)( 9,26)(10,25)(11,28)(12,27)(13,22)(14,21)(15,23)(16,24)(17,32)(18,31)(19,30)(20,29)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 7,33)( 2, 8,34)( 3, 6,35)( 4, 5,36)( 9,15,17)(10,16,18)(11,14,19)(12,13,20)(21,28,30)(22,27,29)(23,26,32)(24,25,31)$ |
| 3B1 | $3^{8},1^{12}$ | $3$ | $3$ | $16$ | $( 1, 7,33)( 2, 8,34)( 3, 6,35)( 4, 5,36)(21,30,28)(22,29,27)(23,32,26)(24,31,25)$ |
| 3B-1 | $3^{8},1^{12}$ | $3$ | $3$ | $16$ | $( 1,33, 7)( 2,34, 8)( 3,35, 6)( 4,36, 5)(21,28,30)(22,27,29)(23,26,32)(24,25,31)$ |
| 3C | $3^{12}$ | $6$ | $3$ | $24$ | $( 1,29,10)( 2,30, 9)( 3,32,11)( 4,31,12)( 5,24,13)( 6,23,14)( 7,22,16)( 8,21,15)(17,34,28)(18,33,27)(19,35,26)(20,36,25)$ |
| 3D1 | $3^{12}$ | $6$ | $3$ | $24$ | $( 1,22,10)( 2,21, 9)( 3,23,11)( 4,24,12)( 5,25,13)( 6,26,14)( 7,27,16)( 8,28,15)(17,34,30)(18,33,29)(19,35,32)(20,36,31)$ |
| 3D-1 | $3^{12}$ | $6$ | $3$ | $24$ | $( 1,10,22)( 2, 9,21)( 3,11,23)( 4,12,24)( 5,13,25)( 6,14,26)( 7,16,27)( 8,15,28)(17,30,34)(18,29,33)(19,32,35)(20,31,36)$ |
| 6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,34, 7, 2,33, 8)( 3,36, 6, 4,35, 5)( 9,18,15,10,17,16)(11,20,14,12,19,13)(21,29,28,22,30,27)(23,31,26,24,32,25)$ |
| 6B1 | $6^{4},2^{6}$ | $3$ | $6$ | $26$ | $( 1,34, 7, 2,33, 8)( 3,36, 6, 4,35, 5)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,27,30,22,28,29)(23,25,32,24,26,31)$ |
| 6B-1 | $6^{4},2^{6}$ | $3$ | $6$ | $26$ | $( 1,34, 7, 2,33, 8)( 3,36, 6, 4,35, 5)( 9,16,17,10,15,18)(11,13,19,12,14,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
| 6C | $6^{6}$ | $6$ | $6$ | $30$ | $( 1, 9,29, 2,10,30)( 3,12,32, 4,11,31)( 5,14,24, 6,13,23)( 7,15,22, 8,16,21)(17,27,34,18,28,33)(19,25,35,20,26,36)$ |
| 6D1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1, 9,22, 2,10,21)( 3,12,23, 4,11,24)( 5,14,25, 6,13,26)( 7,15,27, 8,16,28)(17,29,34,18,30,33)(19,31,35,20,32,36)$ |
| 6D-1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1, 9,27, 2,10,28)( 3,12,26, 4,11,25)( 5,14,31, 6,13,32)( 7,15,29, 8,16,30)(17,22,34,18,21,33)(19,24,35,20,23,36)$ |
| 6E1 | $6^{4},2^{6}$ | $9$ | $6$ | $26$ | $( 1, 3)( 2, 4)( 5,34)( 6,33)( 7,35)( 8,36)( 9,24,15,31,17,25)(10,23,16,32,18,26)(11,22,14,29,19,27)(12,21,13,30,20,28)$ |
| 6E-1 | $6^{4},2^{6}$ | $9$ | $6$ | $26$ | $( 1, 3)( 2, 4)( 5,34)( 6,33)( 7,35)( 8,36)( 9,25,17,31,15,24)(10,26,18,32,16,23)(11,27,19,29,14,22)(12,28,20,30,13,21)$ |
| 6F1 | $6^{4},2^{6}$ | $9$ | $6$ | $26$ | $( 1,36)( 2,35)( 3,34)( 4,33)( 5, 7)( 6, 8)( 9,32,15,26,17,23)(10,31,16,25,18,24)(11,30,14,28,19,21)(12,29,13,27,20,22)$ |
| 6F-1 | $6^{4},2^{6}$ | $9$ | $6$ | $26$ | $( 1,36)( 2,35)( 3,34)( 4,33)( 5, 7)( 6, 8)( 9,23,17,26,15,32)(10,24,18,25,16,31)(11,21,19,28,14,30)(12,22,20,27,13,29)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B1 | 3B-1 | 3C | 3D1 | 3D-1 | 6A | 6B1 | 6B-1 | 6C | 6D1 | 6D-1 | 6E1 | 6E-1 | 6F1 | 6F-1 | ||
| Size | 1 | 1 | 9 | 9 | 2 | 3 | 3 | 6 | 6 | 6 | 2 | 3 | 3 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B-1 | 3B1 | 3C | 3D-1 | 3D1 | 3A | 3B1 | 3B-1 | 3C | 3D1 | 3D-1 | 3B-1 | 3B1 | 3B-1 | 3B1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2A | 2B | 2B | 2C | 2C | |
| Type | |||||||||||||||||||||
| 108.25.1a | R | ||||||||||||||||||||
| 108.25.1b | R | ||||||||||||||||||||
| 108.25.1c | R | ||||||||||||||||||||
| 108.25.1d | R | ||||||||||||||||||||
| 108.25.1e1 | C | ||||||||||||||||||||
| 108.25.1e2 | C | ||||||||||||||||||||
| 108.25.1f1 | C | ||||||||||||||||||||
| 108.25.1f2 | C | ||||||||||||||||||||
| 108.25.1g1 | C | ||||||||||||||||||||
| 108.25.1g2 | C | ||||||||||||||||||||
| 108.25.1h1 | C | ||||||||||||||||||||
| 108.25.1h2 | C | ||||||||||||||||||||
| 108.25.2a | R | ||||||||||||||||||||
| 108.25.2b | R | ||||||||||||||||||||
| 108.25.2c1 | C | ||||||||||||||||||||
| 108.25.2c2 | C | ||||||||||||||||||||
| 108.25.2d1 | C | ||||||||||||||||||||
| 108.25.2d2 | C | ||||||||||||||||||||
| 108.25.6a | R | ||||||||||||||||||||
| 108.25.6b | R |
Regular extensions
Data not computed