Show commands: Magma
Group invariants
| Abstract group: | $(C_3\times A_4):C_{12}$ |
| |
| Order: | $432=2^{4} \cdot 3^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $656$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,13,3,15)(2,14,4,16)(5,24,8,21)(6,23,7,22)(9,20,12,18)(10,19,11,17)(25,29)(26,30)(27,32)(28,31)(33,34)$, $(1,32,16,2,31,15)(3,29,13,4,30,14)(5,33,17,6,34,18)(7,35,19,8,36,20)(9,26,22,10,25,21)(11,28,23,12,27,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $S_3$, $C_6$ $12$: $C_{12}$, $C_3 : C_4$ $18$: $S_3\times C_3$ $24$: $S_4$ $36$: $C_3\times (C_3 : C_4)$ $48$: 12T27 $54$: $C_3^2 : C_6$ $72$: 12T45 $108$: 36T70 $144$: 36T104 $216$: 18T97 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Degree 9: $C_3^2 : C_6$
Degree 12: 12T27
Degree 18: 18T97
Low degree siblings
36T572, 36T574Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
| 2B | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,15)(14,16)(17,19)(18,20)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)$ |
| 2C | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)(17,19)(18,20)(21,24)(22,23)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,12, 7)( 2,11, 8)( 3, 9, 6)( 4,10, 5)(13,22,18)(14,21,17)(15,23,20)(16,24,19)(25,33,30)(26,34,29)(27,35,32)(28,36,31)$ |
| 3B1 | $3^{8},1^{12}$ | $3$ | $3$ | $16$ | $(13,18,22)(14,17,21)(15,20,23)(16,19,24)(25,33,30)(26,34,29)(27,35,32)(28,36,31)$ |
| 3B-1 | $3^{8},1^{12}$ | $3$ | $3$ | $16$ | $(13,22,18)(14,21,17)(15,23,20)(16,24,19)(25,30,33)(26,29,34)(27,32,35)(28,31,36)$ |
| 3C | $3^{12}$ | $24$ | $3$ | $24$ | $( 1,27,21)( 2,28,22)( 3,26,23)( 4,25,24)( 5,30,16)( 6,29,15)( 7,32,14)( 8,31,13)( 9,34,20)(10,33,19)(11,36,18)(12,35,17)$ |
| 3D1 | $3^{12}$ | $24$ | $3$ | $24$ | $( 1,17,27)( 2,18,28)( 3,20,26)( 4,19,25)( 5,24,30)( 6,23,29)( 7,21,32)( 8,22,31)( 9,15,34)(10,16,33)(11,13,36)(12,14,35)$ |
| 3D-1 | $3^{12}$ | $24$ | $3$ | $24$ | $( 1,27,17)( 2,28,18)( 3,26,20)( 4,25,19)( 5,30,24)( 6,29,23)( 7,32,21)( 8,31,22)( 9,34,15)(10,33,16)(11,36,13)(12,35,14)$ |
| 4A1 | $4^{9}$ | $18$ | $4$ | $27$ | $( 1, 4, 2, 3)( 5,11, 6,12)( 7,10, 8, 9)(13,34,14,33)(15,35,16,36)(17,30,18,29)(19,31,20,32)(21,25,22,26)(23,27,24,28)$ |
| 4A-1 | $4^{9}$ | $18$ | $4$ | $27$ | $( 1, 3, 2, 4)( 5,12, 6,11)( 7, 9, 8,10)(13,33,14,34)(15,36,16,35)(17,29,18,30)(19,32,20,31)(21,26,22,25)(23,28,24,27)$ |
| 4B1 | $4^{6},2^{5},1^{2}$ | $18$ | $4$ | $23$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 7, 8)(13,31,16,29)(14,32,15,30)(17,27,20,25)(18,28,19,26)(21,35,23,33)(22,36,24,34)$ |
| 4B-1 | $4^{6},2^{5},1^{2}$ | $18$ | $4$ | $23$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 7, 8)(13,29,16,31)(14,30,15,32)(17,25,20,27)(18,26,19,28)(21,33,23,35)(22,34,24,36)$ |
| 6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 8,12, 2, 7,11)( 3, 5, 9, 4, 6,10)(13,17,22,14,18,21)(15,19,23,16,20,24)(25,29,33,26,30,34)(27,31,35,28,32,36)$ |
| 6B1 | $6^{4},2^{6}$ | $3$ | $6$ | $26$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,23,18,15,22,20)(14,24,17,16,21,19)(25,31,33,28,30,36)(26,32,34,27,29,35)$ |
| 6B-1 | $6^{4},2^{6}$ | $3$ | $6$ | $26$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,20,22,15,18,23)(14,19,21,16,17,24)(25,36,30,28,33,31)(26,35,29,27,34,32)$ |
| 6C1 | $6^{4},2^{6}$ | $3$ | $6$ | $26$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,21,18,14,22,17)(15,24,20,16,23,19)(25,29,33,26,30,34)(27,31,35,28,32,36)$ |
| 6C-1 | $6^{4},2^{6}$ | $3$ | $6$ | $26$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,17,22,14,18,21)(15,19,23,16,20,24)(25,34,30,26,33,29)(27,36,32,28,35,31)$ |
| 6D1 | $6^{4},1^{12}$ | $3$ | $6$ | $20$ | $(13,24,18,16,22,19)(14,23,17,15,21,20)(25,32,33,27,30,35)(26,31,34,28,29,36)$ |
| 6D-1 | $6^{4},1^{12}$ | $3$ | $6$ | $20$ | $(13,19,22,16,18,24)(14,20,21,15,17,23)(25,35,30,27,33,32)(26,36,29,28,34,31)$ |
| 6E | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,10, 7, 4,12, 5)( 2, 9, 8, 3,11, 6)(13,24,18,16,22,19)(14,23,17,15,21,20)(25,34,30,26,33,29)(27,36,32,28,35,31)$ |
| 6F | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1, 9, 7, 3,12, 6)( 2,10, 8, 4,11, 5)(13,23,18,15,22,20)(14,24,17,16,21,19)(25,33,30)(26,34,29)(27,35,32)(28,36,31)$ |
| 6G1 | $6^{4},2^{6}$ | $6$ | $6$ | $26$ | $( 1, 8,12, 2, 7,11)( 3, 5, 9, 4, 6,10)(13,15)(14,16)(17,19)(18,20)(21,24)(22,23)(25,36,30,28,33,31)(26,35,29,27,34,32)$ |
| 6G-1 | $6^{4},2^{6}$ | $6$ | $6$ | $26$ | $( 1,10, 7, 4,12, 5)( 2, 9, 8, 3,11, 6)(13,16)(14,15)(17,20)(18,19)(21,23)(22,24)(25,29,33,26,30,34)(27,31,35,28,32,36)$ |
| 6H1 | $6^{2},3^{4},2^{6}$ | $6$ | $6$ | $24$ | $( 1, 7,12)( 2, 8,11)( 3, 6, 9)( 4, 5,10)(13,16)(14,15)(17,20)(18,19)(21,23)(22,24)(25,35,30,27,33,32)(26,36,29,28,34,31)$ |
| 6H-1 | $6^{2},3^{4},2^{6}$ | $6$ | $6$ | $24$ | $( 1, 9, 7, 3,12, 6)( 2,10, 8, 4,11, 5)(13,15)(14,16)(17,19)(18,20)(21,24)(22,23)(25,30,33)(26,29,34)(27,32,35)(28,31,36)$ |
| 6I | $6^{6}$ | $24$ | $6$ | $30$ | $( 1,22,27, 2,21,28)( 3,24,26, 4,23,25)( 5,15,30, 6,16,29)( 7,13,32, 8,14,31)( 9,19,34,10,20,33)(11,17,36,12,18,35)$ |
| 6J1 | $6^{6}$ | $24$ | $6$ | $30$ | $( 1,28,17, 2,27,18)( 3,25,20, 4,26,19)( 5,29,24, 6,30,23)( 7,31,21, 8,32,22)( 9,33,15,10,34,16)(11,35,13,12,36,14)$ |
| 6J-1 | $6^{6}$ | $24$ | $6$ | $30$ | $( 1,18,27, 2,17,28)( 3,19,26, 4,20,25)( 5,23,30, 6,24,29)( 7,22,32, 8,21,31)( 9,16,34,10,15,33)(11,14,36,12,13,35)$ |
| 12A1 | $12^{2},4^{3}$ | $18$ | $12$ | $31$ | $( 1, 3, 2, 4)( 5,12, 6,11)( 7, 9, 8,10)(13,30,21,34,18,25,14,29,22,33,17,26)(15,31,24,35,20,28,16,32,23,36,19,27)$ |
| 12A-1 | $12^{2},4^{3}$ | $18$ | $12$ | $31$ | $( 1, 3, 2, 4)( 5,12, 6,11)( 7, 9, 8,10)(13,27,17,36,22,32,14,28,18,35,21,31)(15,26,19,33,23,29,16,25,20,34,24,30)$ |
| 12A5 | $12^{2},4^{3}$ | $18$ | $12$ | $31$ | $( 1, 4, 2, 3)( 5,11, 6,12)( 7,10, 8, 9)(13,28,17,35,22,31,14,27,18,36,21,32)(15,25,19,34,23,30,16,26,20,33,24,29)$ |
| 12A-5 | $12^{2},4^{3}$ | $18$ | $12$ | $31$ | $( 1, 4, 2, 3)( 5,11, 6,12)( 7,10, 8, 9)(13,29,21,33,18,26,14,30,22,34,17,25)(15,32,24,36,20,27,16,31,23,35,19,28)$ |
| 12B1 | $12^{2},2^{5},1^{2}$ | $18$ | $12$ | $27$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 7, 8)(13,26,24,31,18,34,16,28,22,29,19,36)(14,25,23,32,17,33,15,27,21,30,20,35)$ |
| 12B-1 | $12^{2},2^{5},1^{2}$ | $18$ | $12$ | $27$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 7, 8)(13,36,19,29,22,28,16,34,18,31,24,26)(14,35,20,30,21,27,15,33,17,32,23,25)$ |
| 12B5 | $12^{2},2^{5},1^{2}$ | $18$ | $12$ | $27$ | $( 1,12)( 2,11)( 3,10)( 4, 9)( 5, 6)(13,35,19,30,22,27,16,33,18,32,24,25)(14,36,20,29,21,28,15,34,17,31,23,26)$ |
| 12B-5 | $12^{2},2^{5},1^{2}$ | $18$ | $12$ | $27$ | $( 1,12)( 2,11)( 3,10)( 4, 9)( 5, 6)(13,25,24,32,18,33,16,27,22,30,19,35)(14,26,23,31,17,34,15,28,21,29,20,36)$ |
Malle's constant $a(G)$: $1/12$
Character table
38 x 38 character table
Regular extensions
Data not computed