Show commands: Magma
Group invariants
| Abstract group: | $C_2^2\times S_3\wr S_3$ |
| |
| Order: | $5184=2^{6} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $6160$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,3)(2,4)(5,8)(6,7)(9,12)(10,11)(13,19)(14,20)(15,18)(16,17)(21,32)(22,31)(23,29)(24,30)(25,28)(26,27)(33,36)(34,35)$, $(1,21,33,25)(2,22,34,26)(3,23,36,28)(4,24,35,27)(5,31)(6,32)(7,29)(8,30)(9,12)(10,11)(13,15)(14,16)(17,20)(18,19)$, $(1,24,15,34,28,9)(2,23,16,33,27,10)(3,22,13,35,25,12)(4,21,14,36,26,11)(5,29,17,6,30,18)(7,31,19,8,32,20)$, $(1,34,7,2,33,8)(3,35,6,4,36,5)(9,23)(10,24)(11,22)(12,21)(13,30,18,26)(14,29,17,25)(15,31,19,27)(16,32,20,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $6$: $S_3$ $8$: $C_2^3$ x 15 $12$: $D_{6}$ x 7 $16$: $C_2^4$ $24$: $S_4$, $S_3 \times C_2^2$ x 7 $48$: $S_4\times C_2$ x 7, 24T30 $96$: 12T48 x 7 $192$: 24T400 $1296$: $S_3\wr S_3$ $2592$: 18T394 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 6: $D_{6}$ x 3
Degree 9: $S_3\wr S_3$
Degree 12: $S_3 \times C_2^2$
Degree 18: 18T397 x 3
Low degree siblings
36T6138 x 48, 36T6160 x 15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
88 x 88 character table
Regular extensions
Data not computed