Show commands: Magma
Group invariants
| Abstract group: | $C_2^2\times S_3\wr S_3$ |
| |
| Order: | $5184=2^{6} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $6138$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,7)(2,8)(3,6)(4,5)(9,22,16,26,19,30)(10,21,15,25,20,29)(11,24,14,28,18,32)(12,23,13,27,17,31)$, $(1,28,3,26)(2,27,4,25)(5,21,33,31)(6,22,34,32)(7,24,36,30)(8,23,35,29)(9,10)(11,12)(13,18)(14,17)(15,19)(16,20)$, $(1,32,20,4,29,18)(2,31,19,3,30,17)(5,25,11,7,28,10)(6,26,12,8,27,9)(13,33,23,16,36,22)(14,34,24,15,35,21)$, $(1,8)(2,7)(3,5)(4,6)(9,27,16,23,19,31)(10,28,15,24,20,32)(11,25,14,21,18,29)(12,26,13,22,17,30)(33,34)(35,36)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $6$: $S_3$ $8$: $C_2^3$ x 15 $12$: $D_{6}$ x 7 $16$: $C_2^4$ $24$: $S_4$, $S_3 \times C_2^2$ x 7 $48$: $S_4\times C_2$ x 7, 24T30 $96$: 12T48 x 7 $192$: 24T400 $1296$: $S_3\wr S_3$ $2592$: 18T394 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$, $S_4\times C_2$ x 2
Degree 9: $S_3\wr S_3$
Degree 12: 12T48
Low degree siblings
36T6138 x 47, 36T6160 x 16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
88 x 88 character table
Regular extensions
Data not computed