Show commands: Magma
Group invariants
| Abstract group: | $C_6\times S_3\times A_4$ |
| |
| Order: | $432=2^{4} \cdot 3^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $563$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $6$ |
| |
| Generators: | $(1,9,4,12,6,8)(2,10,3,11,5,7)(13,21,15,24,18,19)(14,22,16,23,17,20)(25,33,27,36,29,32)(26,34,28,35,30,31)$, $(1,8,30,35,17,24)(2,7,29,36,18,23)(3,9,25,32,14,20)(4,10,26,31,13,19)(5,11,28,33,15,21)(6,12,27,34,16,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ x 4 $4$: $C_2^2$ $6$: $S_3$, $C_6$ x 12 $9$: $C_3^2$ $12$: $A_4$, $D_{6}$, $C_6\times C_2$ x 4 $18$: $S_3\times C_3$ x 4, $C_6 \times C_3$ x 3 $24$: $A_4\times C_2$ x 3 $36$: $C_6\times S_3$ x 4, $C_3\times A_4$, 36T4 $48$: $C_2^2 \times A_4$ $54$: $C_3^2\times S_3$ $72$: 12T43, 18T25 x 3 $108$: 36T64 $144$: 18T60, 36T103 $216$: 24T563 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$, $S_3\times C_3$ x 3, $A_4\times C_2$ x 2
Degree 9: None
Degree 12: $C_2^2 \times A_4$
Degree 18: $C_3^2\times S_3$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
72 x 72 character table
Regular extensions
Data not computed