Properties

Label 36T563
36T563 1 8 1->8 9 1->9 2 7 2->7 10 2->10 3 3->9 11 3->11 4 4->10 12 4->12 5 5->7 5->11 6 6->8 6->12 7->2 29 7->29 8->1 30 8->30 9->4 25 9->25 10->3 26 10->26 11->5 28 11->28 12->6 27 12->27 13 19 13->19 21 13->21 14 20 14->20 22 14->22 15 15->21 24 15->24 16 16->22 23 16->23 17 17->20 17->24 18 18->19 18->23 19->4 19->13 20->3 20->14 21->5 21->15 22->6 22->16 23->2 23->17 24->1 24->18 32 25->32 33 25->33 31 26->31 34 26->34 27->34 36 27->36 28->33 35 28->35 29->32 29->36 30->31 30->35 31->13 31->26 32->14 32->25 33->15 33->27 34->16 34->28 35->17 35->30 36->18 36->29
Degree $36$
Order $432$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_6\times S_3\times A_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(36, 563);
 

Group invariants

Abstract group:  $C_6\times S_3\times A_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $432=2^{4} \cdot 3^{3}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $36$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $563$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $6$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,9,4,12,6,8)(2,10,3,11,5,7)(13,21,15,24,18,19)(14,22,16,23,17,20)(25,33,27,36,29,32)(26,34,28,35,30,31)$, $(1,8,30,35,17,24)(2,7,29,36,18,23)(3,9,25,32,14,20)(4,10,26,31,13,19)(5,11,28,33,15,21)(6,12,27,34,16,22)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$3$:  $C_3$ x 4
$4$:  $C_2^2$
$6$:  $S_3$, $C_6$ x 12
$9$:  $C_3^2$
$12$:  $A_4$, $D_{6}$, $C_6\times C_2$ x 4
$18$:  $S_3\times C_3$ x 4, $C_6 \times C_3$ x 3
$24$:  $A_4\times C_2$ x 3
$36$:  $C_6\times S_3$ x 4, $C_3\times A_4$, 36T4
$48$:  $C_2^2 \times A_4$
$54$:  $C_3^2\times S_3$
$72$:  12T43, 18T25 x 3
$108$:  36T64
$144$:  18T60, 36T103
$216$:  24T563

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $C_3$

Degree 4: None

Degree 6: $C_6$, $S_3\times C_3$ x 3, $A_4\times C_2$ x 2

Degree 9: None

Degree 12: $C_2^2 \times A_4$

Degree 18: $C_3^2\times S_3$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

72 x 72 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed