Show commands: Magma
Group invariants
| Abstract group: | $C_3\times S_5$ |
| |
| Order: | $360=2^{3} \cdot 3^{2} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $550$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $6$ |
| |
| Generators: | $(1,12,29,13,19,5,9,28,18,23,3,7,25,15,21)(2,11,30,14,20,6,10,27,17,24,4,8,26,16,22)(31,34,35)(32,33,36)$, $(1,34)(2,33)(3,35)(4,36)(5,31)(6,32)(7,17)(8,18)(9,14)(10,13)(11,15)(12,16)(19,27)(20,28)(21,30)(22,29)(23,26)(24,25)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $120$: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$, $\PGL(2,5)$
Degree 9: None
Degree 12: $S_5$
Degree 18: 18T144
Low degree siblings
15T24, 18T144, 30T90, 30T98, 30T103, 45T44Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $10$ | $2$ | $18$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5, 8)( 6, 7)(13,26)(14,25)(15,27)(16,28)(17,29)(18,30)(19,35)(20,36)(21,31)(22,32)(23,34)(24,33)$ |
| 2B | $2^{12},1^{12}$ | $15$ | $2$ | $12$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,18)( 6,17)( 7,29)( 8,30)( 9,25)(10,26)(11,27)(12,28)$ |
| 3A1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1, 5, 3)( 2, 6, 4)( 7,12, 9)( 8,11,10)(13,18,15)(14,17,16)(19,23,21)(20,24,22)(25,29,28)(26,30,27)(31,35,34)(32,36,33)$ |
| 3A-1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,12)( 8,10,11)(13,15,18)(14,16,17)(19,21,23)(20,22,24)(25,28,29)(26,27,30)(31,34,35)(32,33,36)$ |
| 3B | $3^{12}$ | $20$ | $3$ | $24$ | $( 1,13, 9)( 2,14,10)( 3,15,12)( 4,16,11)( 5,18, 7)( 6,17, 8)(19,36,28)(20,35,27)(21,32,29)(22,31,30)(23,33,25)(24,34,26)$ |
| 3C1 | $3^{12}$ | $20$ | $3$ | $24$ | $( 1,28,32)( 2,27,31)( 3,29,33)( 4,30,34)( 5,25,36)( 6,26,35)( 7,23,15)( 8,24,16)( 9,19,18)(10,20,17)(11,22,14)(12,21,13)$ |
| 3C-1 | $3^{12}$ | $20$ | $3$ | $24$ | $( 1,32,28)( 2,31,27)( 3,33,29)( 4,34,30)( 5,36,25)( 6,35,26)( 7,15,23)( 8,16,24)( 9,18,19)(10,17,20)(11,14,22)(12,13,21)$ |
| 4A | $4^{6},2^{6}$ | $30$ | $4$ | $24$ | $( 1,26,13,10)( 2,25,14, 9)( 3,27,15,11)( 4,28,16,12)( 5,30,18, 8)( 6,29,17, 7)(19,20)(21,22)(23,24)(31,32)(33,34)(35,36)$ |
| 5A | $5^{6},1^{6}$ | $24$ | $5$ | $24$ | $( 7,18,29,21,32)( 8,17,30,22,31)( 9,13,25,23,33)(10,14,26,24,34)(11,16,27,20,35)(12,15,28,19,36)$ |
| 6A1 | $6^{6}$ | $10$ | $6$ | $30$ | $( 1,11, 5,10, 3, 8)( 2,12, 6, 9, 4, 7)(13,27,18,26,15,30)(14,28,17,25,16,29)(19,31,23,35,21,34)(20,32,24,36,22,33)$ |
| 6A-1 | $6^{6}$ | $10$ | $6$ | $30$ | $( 1, 8, 3,10, 5,11)( 2, 7, 4, 9, 6,12)(13,30,15,26,18,27)(14,29,16,25,17,28)(19,34,21,35,23,31)(20,33,22,36,24,32)$ |
| 6B1 | $6^{4},3^{4}$ | $15$ | $6$ | $28$ | $( 1,15, 5,13, 3,18)( 2,16, 6,14, 4,17)( 7,25,12,29, 9,28)( 8,26,11,30,10,27)(19,21,23)(20,22,24)(31,34,35)(32,33,36)$ |
| 6B-1 | $6^{4},3^{4}$ | $15$ | $6$ | $28$ | $( 1,18, 3,13, 5,15)( 2,17, 4,14, 6,16)( 7,28, 9,29,12,25)( 8,27,10,30,11,26)(19,23,21)(20,24,22)(31,35,34)(32,36,33)$ |
| 6C | $6^{6}$ | $20$ | $6$ | $30$ | $( 1,26,13,24, 9,34)( 2,25,14,23,10,33)( 3,27,15,20,12,35)( 4,28,16,19,11,36)( 5,30,18,22, 7,31)( 6,29,17,21, 8,32)$ |
| 6D1 | $6^{6}$ | $20$ | $6$ | $30$ | $( 1, 8,28,24,32,16)( 2, 7,27,23,31,15)( 3,10,29,20,33,17)( 4, 9,30,19,34,18)( 5,11,25,22,36,14)( 6,12,26,21,35,13)$ |
| 6D-1 | $6^{6}$ | $20$ | $6$ | $30$ | $( 1,16,32,24,28, 8)( 2,15,31,23,27, 7)( 3,17,33,20,29,10)( 4,18,34,19,30, 9)( 5,14,36,22,25,11)( 6,13,35,21,26,12)$ |
| 12A1 | $12^{2},6^{2}$ | $30$ | $12$ | $32$ | $( 1, 8,15,26, 5,11,13,30, 3,10,18,27)( 2, 7,16,25, 6,12,14,29, 4, 9,17,28)(19,24,21,20,23,22)(31,36,34,32,35,33)$ |
| 12A-1 | $12^{2},6^{2}$ | $30$ | $12$ | $32$ | $( 1,27,18,10, 3,30,13,11, 5,26,15, 8)( 2,28,17, 9, 4,29,14,12, 6,25,16, 7)(19,22,23,20,21,24)(31,33,35,32,34,36)$ |
| 15A1 | $15^{2},3^{2}$ | $24$ | $15$ | $32$ | $( 1, 3, 5)( 2, 4, 6)( 7,25,36,18,23,12,29,33,15,21, 9,28,32,13,19)( 8,26,35,17,24,11,30,34,16,22,10,27,31,14,20)$ |
| 15A-1 | $15^{2},3^{2}$ | $24$ | $15$ | $32$ | $( 1, 5, 3)( 2, 6, 4)( 7,19,13,32,28, 9,21,15,33,29,12,23,18,36,25)( 8,20,14,31,27,10,22,16,34,30,11,24,17,35,26)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 4A | 5A | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C | 6D1 | 6D-1 | 12A1 | 12A-1 | 15A1 | 15A-1 | ||
| Size | 1 | 10 | 15 | 1 | 1 | 20 | 20 | 20 | 30 | 24 | 10 | 10 | 15 | 15 | 20 | 20 | 20 | 30 | 30 | 24 | 24 | |
| 2 P | 1A | 1A | 1A | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 2B | 5A | 3A1 | 3A-1 | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 6B1 | 6B-1 | 15A-1 | 15A1 | |
| 3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 1A | 4A | 5A | 2A | 2A | 2B | 2B | 2A | 2A | 2A | 4A | 4A | 5A | 5A | |
| 5 P | 1A | 2A | 2B | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 4A | 1A | 6A-1 | 6A1 | 6B-1 | 6B1 | 6C | 6D-1 | 6D1 | 12A-1 | 12A1 | 3A1 | 3A-1 | |
| Type | ||||||||||||||||||||||
| 360.119.1a | R | |||||||||||||||||||||
| 360.119.1b | R | |||||||||||||||||||||
| 360.119.1c1 | C | |||||||||||||||||||||
| 360.119.1c2 | C | |||||||||||||||||||||
| 360.119.1d1 | C | |||||||||||||||||||||
| 360.119.1d2 | C | |||||||||||||||||||||
| 360.119.4a | R | |||||||||||||||||||||
| 360.119.4b | R | |||||||||||||||||||||
| 360.119.4c1 | C | |||||||||||||||||||||
| 360.119.4c2 | C | |||||||||||||||||||||
| 360.119.4d1 | C | |||||||||||||||||||||
| 360.119.4d2 | C | |||||||||||||||||||||
| 360.119.5a | R | |||||||||||||||||||||
| 360.119.5b | R | |||||||||||||||||||||
| 360.119.5c1 | C | |||||||||||||||||||||
| 360.119.5c2 | C | |||||||||||||||||||||
| 360.119.5d1 | C | |||||||||||||||||||||
| 360.119.5d2 | C | |||||||||||||||||||||
| 360.119.6a | R | |||||||||||||||||||||
| 360.119.6b1 | C | |||||||||||||||||||||
| 360.119.6b2 | C |
Regular extensions
Data not computed