Show commands: Magma
Group invariants
| Abstract group: | $C_3^2:S_3^2$ |
| |
| Order: | $324=2^{2} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $528$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,22,15,36,27,10)(2,23,13,35,26,11)(3,24,14,34,25,12)(4,32,30,19,16,8)(5,33,29,21,18,7)(6,31,28,20,17,9)$, $(1,8)(2,7)(3,9)(4,23)(5,24)(6,22)(10,29)(11,28)(12,30)(13,19)(14,21)(15,20)(16,36)(17,34)(18,35)(25,32)(26,31)(27,33)$, $(1,3,2)(10,11,12)(13,15,14)(22,23,24)(25,26,27)(34,36,35)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 5 $12$: $D_{6}$ x 5 $18$: $C_3^2:C_2$ $36$: $S_3^2$ x 4, 18T12 $108$: $C_3^2 : D_{6} $, 18T58 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $S_3^2$
Degree 9: None
Degree 12: $S_3^2$
Degree 18: None
Low degree siblings
18T133, 18T139, 27T117 x 3, 27T127, 36T506, 36T509Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,29)( 2,28)( 3,30)( 4,14)( 5,15)( 6,13)( 7,36)( 8,34)( 9,35)(10,21)(11,20)(12,19)(16,25)(17,26)(18,27)(22,33)(23,31)(24,32)$ |
| 2B | $2^{18}$ | $27$ | $2$ | $18$ | $( 1,24)( 2,22)( 3,23)( 4, 9)( 5, 8)( 6, 7)(10,27)(11,26)(12,25)(13,34)(14,36)(15,35)(16,21)(17,19)(18,20)(28,31)(29,33)(30,32)$ |
| 2C | $2^{18}$ | $27$ | $2$ | $18$ | $( 1,32)( 2,33)( 3,31)( 4,23)( 5,24)( 6,22)( 7,13)( 8,15)( 9,14)(10,28)(11,30)(12,29)(16,35)(17,36)(18,34)(19,27)(20,25)(21,26)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,11,12)(13,15,14)(16,17,18)(19,21,20)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,36,35)$ |
| 3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 3, 2)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,26,27)(28,30,29)(31,33,32)(34,36,35)$ |
| 3C | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 4, 6, 5)( 7, 9, 8)(16,17,18)(19,21,20)(28,29,30)(31,32,33)$ |
| 3D | $3^{12}$ | $6$ | $3$ | $24$ | $( 1,26,15)( 2,25,13)( 3,27,14)( 4,30,18)( 5,29,17)( 6,28,16)( 7,21,31)( 8,19,33)( 9,20,32)(10,23,36)(11,24,35)(12,22,34)$ |
| 3E | $3^{12}$ | $6$ | $3$ | $24$ | $( 1,14,25)( 2,15,27)( 3,13,26)( 4,16,29)( 5,18,28)( 6,17,30)( 7,32,19)( 8,31,20)( 9,33,21)(10,35,22)(11,34,23)(12,36,24)$ |
| 3F | $3^{12}$ | $6$ | $3$ | $24$ | $( 1,27,13)( 2,26,14)( 3,25,15)( 4,28,17)( 5,30,16)( 6,29,18)( 7,20,33)( 8,21,32)( 9,19,31)(10,24,34)(11,22,36)(12,23,35)$ |
| 3G | $3^{12}$ | $6$ | $3$ | $24$ | $( 1,26,14)( 2,25,15)( 3,27,13)( 4,17,29)( 5,16,28)( 6,18,30)( 7,20,32)( 8,21,31)( 9,19,33)(10,34,23)(11,36,24)(12,35,22)$ |
| 3H | $3^{10},1^{6}$ | $12$ | $3$ | $20$ | $( 1, 3, 2)( 4,17,30)( 5,16,29)( 6,18,28)( 7, 9, 8)(10,36,24)(11,35,22)(12,34,23)(13,14,15)(19,20,21)$ |
| 3I | $3^{12}$ | $12$ | $3$ | $24$ | $( 1,13,25)( 2,14,27)( 3,15,26)( 4,30,16)( 5,29,18)( 6,28,17)( 7,33,21)( 8,32,19)( 9,31,20)(10,24,35)(11,22,34)(12,23,36)$ |
| 3J | $3^{10},1^{6}$ | $12$ | $3$ | $20$ | $( 1, 2, 3)( 4,17,30)( 5,16,29)( 6,18,28)( 7, 9, 8)(10,35,23)(11,34,24)(12,36,22)(19,20,21)(25,26,27)$ |
| 3K | $3^{10},1^{6}$ | $12$ | $3$ | $20$ | $( 4,17,30)( 5,16,29)( 6,18,28)( 7, 9, 8)(10,34,22)(11,36,23)(12,35,24)(13,15,14)(19,20,21)(25,27,26)$ |
| 6A | $6^{6}$ | $18$ | $6$ | $30$ | $( 1, 5,26,29,15,17)( 2, 6,25,28,13,16)( 3, 4,27,30,14,18)( 7,23,21,36,31,10)( 8,22,19,34,33,12)( 9,24,20,35,32,11)$ |
| 6B | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,18,14,28,25, 5)( 2,17,15,30,27, 6)( 3,16,13,29,26, 4)( 7,10,32,35,19,22)( 8,12,31,36,20,24)( 9,11,33,34,21,23)$ |
| 6C | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,29, 3,30, 2,28)( 4,13, 6,15, 5,14)( 7,35, 9,34, 8,36)(10,21,11,20,12,19)(16,26,17,27,18,25)(22,33,23,31,24,32)$ |
| 6D | $6^{6}$ | $18$ | $6$ | $30$ | $( 1, 6,27,29,13,18)( 2, 4,26,28,14,17)( 3, 5,25,30,15,16)( 7,22,20,36,33,11)( 8,24,21,34,32,10)( 9,23,19,35,31,12)$ |
| 6E | $6^{6}$ | $54$ | $6$ | $30$ | $( 1,36,26,24,14,11)( 2,35,25,22,15,12)( 3,34,27,23,13,10)( 4,33,17, 9,29,19)( 5,31,16, 8,28,21)( 6,32,18, 7,30,20)$ |
| 6F | $6^{6}$ | $54$ | $6$ | $30$ | $( 1,33, 3,32, 2,31)( 4,22, 5,23, 6,24)( 7,14, 8,13, 9,15)(10,29,11,28,12,30)(16,36,18,35,17,34)(19,26,20,27,21,25)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 6A | 6B | 6C | 6D | 6E | 6F | ||
| Size | 1 | 9 | 27 | 27 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 54 | 54 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3D | 3E | 3A | 3F | 3G | 3B | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2B | 2C | |
| Type | ||||||||||||||||||||||
| 324.121.1a | R | |||||||||||||||||||||
| 324.121.1b | R | |||||||||||||||||||||
| 324.121.1c | R | |||||||||||||||||||||
| 324.121.1d | R | |||||||||||||||||||||
| 324.121.2a | R | |||||||||||||||||||||
| 324.121.2b | R | |||||||||||||||||||||
| 324.121.2c | R | |||||||||||||||||||||
| 324.121.2d | R | |||||||||||||||||||||
| 324.121.2e | R | |||||||||||||||||||||
| 324.121.2f | R | |||||||||||||||||||||
| 324.121.2g | R | |||||||||||||||||||||
| 324.121.2h | R | |||||||||||||||||||||
| 324.121.2i | R | |||||||||||||||||||||
| 324.121.2j | R | |||||||||||||||||||||
| 324.121.4a | R | |||||||||||||||||||||
| 324.121.4b | R | |||||||||||||||||||||
| 324.121.4c | R | |||||||||||||||||||||
| 324.121.4d | R | |||||||||||||||||||||
| 324.121.6a | R | |||||||||||||||||||||
| 324.121.6b | R | |||||||||||||||||||||
| 324.121.12a | R |
Regular extensions
Data not computed