Show commands: Magma
Group invariants
Abstract group: | $C_3^2:S_3^2$ |
| |
Order: | $324=2^{2} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $522$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $9$ |
| |
Generators: | $(1,11,26,34,14,24)(2,10,27,36,15,22)(3,12,25,35,13,23)(4,19,28,8,16,33)(5,20,30,9,18,32)(6,21,29,7,17,31)$, $(1,17,3,18,2,16)(4,15,6,14,5,13)(7,12,9,10,8,11)(19,35,21,36,20,34)(22,31,24,32,23,33)(25,29,27,30,26,28)$, $(1,32,3,33,2,31)(4,23)(5,24)(6,22)(7,25,9,27,8,26)(10,16)(11,17)(12,18)(13,21,15,20,14,19)(28,34)(29,35)(30,36)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$ x 5, $C_6$ x 3 $12$: $D_{6}$ x 5, $C_6\times C_2$ $18$: $S_3\times C_3$ x 5, $C_3^2:C_2$ $36$: $S_3^2$ x 4, $C_6\times S_3$ x 5, 18T12 $54$: 18T23 $108$: 12T70 x 4, 18T58, 36T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 9: None
Degree 18: None
Low degree siblings
36T522 x 3, 36T531 x 12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
54 x 54 character table
Regular extensions
Data not computed