Show commands: Magma
Group invariants
| Abstract group: | $C_3^2:S_3^2$ |
| |
| Order: | $324=2^{2} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $509$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $6$ |
| |
| Generators: | $(1,15,4,14,5,18)(2,16,3,13,6,17)(7,8)(9,11)(10,12)(19,25,24,27,22,30)(20,26,23,28,21,29)(31,32)(33,36)(34,35)$, $(1,26,4,28,5,29)(2,25,3,27,6,30)(7,19,12,22,9,24)(8,20,11,21,10,23)(13,34,16,36,17,32)(14,33,15,35,18,31)$, $(1,21,7,25,13,31)(2,22,8,26,14,32)(3,19,11,29,15,36)(4,20,12,30,16,35)(5,23,9,27,17,33)(6,24,10,28,18,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 5 $12$: $D_{6}$ x 5 $18$: $C_3^2:C_2$ $36$: $S_3^2$ x 4, 18T12 $108$: $C_3^2 : D_{6} $, 18T58 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 9: None
Degree 12: $D_6$
Degree 18: 18T139
Low degree siblings
18T133, 18T139, 27T117 x 3, 27T127, 36T506, 36T528Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,30)( 2,29)( 3,28)( 4,27)( 5,25)( 6,26)( 7,35)( 8,36)( 9,31)(10,32)(11,34)(12,33)(13,20)(14,19)(15,24)(16,23)(17,21)(18,22)$ |
| 2B | $2^{18}$ | $27$ | $2$ | $18$ | $( 1, 6)( 2, 5)( 3, 4)( 7,18)( 8,17)( 9,14)(10,13)(11,16)(12,15)(19,35)(20,36)(21,34)(22,33)(23,32)(24,31)(25,28)(26,27)(29,30)$ |
| 2C | $2^{18}$ | $27$ | $2$ | $18$ | $( 1,36)( 2,35)( 3,31)( 4,32)( 5,34)( 6,33)( 7,26)( 8,25)( 9,29)(10,30)(11,27)(12,28)(13,24)(14,23)(15,20)(16,19)(17,22)(18,21)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 5, 4)( 2, 6, 3)( 7, 9,12)( 8,10,11)(13,17,16)(14,18,15)(19,22,24)(20,21,23)(25,27,30)(26,28,29)(31,33,35)(32,34,36)$ |
| 3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 4, 5)( 2, 3, 6)( 7,12, 9)( 8,11,10)(13,16,17)(14,15,18)(19,22,24)(20,21,23)(25,27,30)(26,28,29)(31,33,35)(32,34,36)$ |
| 3C | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 1, 5, 4)( 2, 6, 3)( 7, 9,12)( 8,10,11)(13,17,16)(14,18,15)$ |
| 3D | $3^{12}$ | $6$ | $3$ | $24$ | $( 1, 9,16)( 2,10,15)( 3, 8,18)( 4, 7,17)( 5,12,13)( 6,11,14)(19,26,34)(20,25,33)(21,27,35)(22,28,36)(23,30,31)(24,29,32)$ |
| 3E | $3^{12}$ | $6$ | $3$ | $24$ | $( 1,13, 7)( 2,14, 8)( 3,15,11)( 4,16,12)( 5,17, 9)( 6,18,10)(19,36,29)(20,35,30)(21,31,25)(22,32,26)(23,33,27)(24,34,28)$ |
| 3F | $3^{12}$ | $6$ | $3$ | $24$ | $( 1,12,17)( 2,11,18)( 3,10,14)( 4, 9,13)( 5, 7,16)( 6, 8,15)(19,28,32)(20,27,31)(21,30,33)(22,29,34)(23,25,35)(24,26,36)$ |
| 3G | $3^{8},1^{12}$ | $6$ | $3$ | $16$ | $( 7,12, 9)( 8,11,10)(13,17,16)(14,18,15)(19,24,22)(20,23,21)(31,33,35)(32,34,36)$ |
| 3H | $3^{12}$ | $12$ | $3$ | $24$ | $( 1, 9,13)( 2,10,14)( 3, 8,15)( 4, 7,16)( 5,12,17)( 6,11,18)(19,28,36)(20,27,35)(21,30,31)(22,29,32)(23,25,33)(24,26,34)$ |
| 3I | $3^{8},1^{12}$ | $12$ | $3$ | $16$ | $( 1, 5, 4)( 2, 6, 3)( 7,12, 9)( 8,11,10)(19,24,22)(20,23,21)(25,27,30)(26,28,29)$ |
| 3J | $3^{12}$ | $12$ | $3$ | $24$ | $( 1, 9,13)( 2,10,14)( 3, 8,15)( 4, 7,16)( 5,12,17)( 6,11,18)(19,29,34)(20,30,33)(21,25,35)(22,26,36)(23,27,31)(24,28,32)$ |
| 3K | $3^{12}$ | $12$ | $3$ | $24$ | $( 1, 9,13)( 2,10,14)( 3, 8,15)( 4, 7,16)( 5,12,17)( 6,11,18)(19,26,32)(20,25,31)(21,27,33)(22,28,34)(23,30,35)(24,29,36)$ |
| 6A | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,23, 9,30,16,31)( 2,24,10,29,15,32)( 3,22, 8,28,18,36)( 4,21, 7,27,17,35)( 5,20,12,25,13,33)( 6,19,11,26,14,34)$ |
| 6B | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,31,13,25, 7,21)( 2,32,14,26, 8,22)( 3,36,15,29,11,19)( 4,35,16,30,12,20)( 5,33,17,27, 9,23)( 6,34,18,28,10,24)$ |
| 6C | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,25, 5,27, 4,30)( 2,26, 6,28, 3,29)( 7,31, 9,33,12,35)( 8,32,10,34,11,36)(13,21,17,23,16,20)(14,22,18,24,15,19)$ |
| 6D | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,21,12,30,17,33)( 2,22,11,29,18,34)( 3,19,10,28,14,32)( 4,20, 9,27,13,31)( 5,23, 7,25,16,35)( 6,24, 8,26,15,36)$ |
| 6E | $6^{4},2^{6}$ | $54$ | $6$ | $26$ | $( 1, 6)( 2, 5)( 3, 4)( 7,14,12,18, 9,15)( 8,13,11,17,10,16)(19,33,24,35,22,31)(20,34,23,36,21,32)(25,28)(26,27)(29,30)$ |
| 6F | $6^{6}$ | $54$ | $6$ | $30$ | $( 1,34, 4,36, 5,32)( 2,33, 3,35, 6,31)( 7,29,12,26, 9,28)( 8,30,11,25,10,27)(13,22,16,24,17,19)(14,21,15,23,18,20)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 6A | 6B | 6C | 6D | 6E | 6F | ||
| Size | 1 | 9 | 27 | 27 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 54 | 54 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3D | 3E | 3A | 3F | 3G | 3B | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2B | 2C | |
| Type | ||||||||||||||||||||||
| 324.121.1a | R | |||||||||||||||||||||
| 324.121.1b | R | |||||||||||||||||||||
| 324.121.1c | R | |||||||||||||||||||||
| 324.121.1d | R | |||||||||||||||||||||
| 324.121.2a | R | |||||||||||||||||||||
| 324.121.2b | R | |||||||||||||||||||||
| 324.121.2c | R | |||||||||||||||||||||
| 324.121.2d | R | |||||||||||||||||||||
| 324.121.2e | R | |||||||||||||||||||||
| 324.121.2f | R | |||||||||||||||||||||
| 324.121.2g | R | |||||||||||||||||||||
| 324.121.2h | R | |||||||||||||||||||||
| 324.121.2i | R | |||||||||||||||||||||
| 324.121.2j | R | |||||||||||||||||||||
| 324.121.4a | R | |||||||||||||||||||||
| 324.121.4b | R | |||||||||||||||||||||
| 324.121.4c | R | |||||||||||||||||||||
| 324.121.4d | R | |||||||||||||||||||||
| 324.121.6a | R | |||||||||||||||||||||
| 324.121.6b | R | |||||||||||||||||||||
| 324.121.12a | R |
Regular extensions
Data not computed