Show commands: Magma
Group invariants
Abstract group: | $C_3\wr C_4$ |
| |
Order: | $324=2^{2} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $497$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $18$ |
| |
Generators: | $(1,34,18,19,3,36,13,22,5,31,15,24)(2,33,17,20,4,35,14,21,6,32,16,23)(7,27,11,26,10,29,8,28,12,25,9,30)$, $(1,29,8,24)(2,30,7,23)(3,25,9,19)(4,26,10,20)(5,27,11,22)(6,28,12,21)(13,35,14,36)(15,32,16,31)(17,34,18,33)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $S_3$, $C_6$ $12$: $C_{12}$, $C_3 : C_4$ $18$: $S_3\times C_3$ $36$: $C_3^2:C_4$, $C_3\times (C_3 : C_4)$ $108$: 12T72, 12T73 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: $S_3\times C_3$, $C_3^2:C_4$
Degree 9: None
Degree 12: $(C_3\times C_3):C_4$, $C_3\times (C_3 : C_4)$, 12T131
Degree 18: 18T123
Low degree siblings
12T131 x 4, 18T123 x 4, 36T497 x 3, 36T514 x 2, 36T527 x 2, 36T532 x 4, 36T536 x 4, 36T543 x 4, 36T544 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $9$ | $2$ | $18$ | $( 1, 8)( 2, 7)( 3, 9)( 4,10)( 5,11)( 6,12)(13,14)(15,16)(17,18)(19,25)(20,26)(21,28)(22,27)(23,30)(24,29)(31,32)(33,34)(35,36)$ |
3A1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1, 5, 3)( 2, 6, 4)( 7,12,10)( 8,11, 9)(13,18,15)(14,17,16)(19,24,22)(20,23,21)(25,29,27)(26,30,28)(31,36,34)(32,35,33)$ |
3A-1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)(13,15,18)(14,16,17)(19,22,24)(20,21,23)(25,27,29)(26,28,30)(31,34,36)(32,33,35)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 5, 3)( 2, 6, 4)( 7,12,10)( 8,11, 9)(13,18,15)(14,17,16)(19,22,24)(20,21,23)(25,27,29)(26,28,30)(31,34,36)(32,33,35)$ |
3C1 | $3^{6},1^{18}$ | $2$ | $3$ | $12$ | $(19,24,22)(20,23,21)(25,29,27)(26,30,28)(31,36,34)(32,35,33)$ |
3C-1 | $3^{6},1^{18}$ | $2$ | $3$ | $12$ | $(19,22,24)(20,21,23)(25,27,29)(26,28,30)(31,34,36)(32,33,35)$ |
3D | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 7,14)( 2, 8,13)( 3,10,16)( 4, 9,15)( 5,12,17)( 6,11,18)(19,26,32)(20,25,31)(21,27,34)(22,28,33)(23,29,36)(24,30,35)$ |
3E | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $(19,32,26)(20,31,25)(21,34,27)(22,33,28)(23,36,29)(24,35,30)$ |
3F1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,10,17)( 2, 9,18)( 3,12,14)( 4,11,13)( 5, 7,16)( 6, 8,15)(19,30,33)(20,29,34)(21,25,36)(22,26,35)(23,27,31)(24,28,32)$ |
3F-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,16,12)( 2,15,11)( 3,17, 7)( 4,18, 8)( 5,14,10)( 6,13, 9)(19,30,33)(20,29,34)(21,25,36)(22,26,35)(23,27,31)(24,28,32)$ |
3G1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,10,17)( 2, 9,18)( 3,12,14)( 4,11,13)( 5, 7,16)( 6, 8,15)(19,28,35)(20,27,36)(21,29,31)(22,30,32)(23,25,34)(24,26,33)$ |
3G-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,12,16)( 2,11,15)( 3, 7,17)( 4, 8,18)( 5,10,14)( 6, 9,13)(19,30,33)(20,29,34)(21,25,36)(22,26,35)(23,27,31)(24,28,32)$ |
3H1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)(13,15,18)(14,16,17)(19,35,28)(20,36,27)(21,31,29)(22,32,30)(23,34,25)(24,33,26)$ |
3H-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,10,17)( 2, 9,18)( 3,12,14)( 4,11,13)( 5, 7,16)( 6, 8,15)(19,24,22)(20,23,21)(25,29,27)(26,30,28)(31,36,34)(32,35,33)$ |
3I1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)(13,15,18)(14,16,17)(19,33,30)(20,34,29)(21,36,25)(22,35,26)(23,31,27)(24,32,28)$ |
3I-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 5, 3)( 2, 6, 4)( 7,12,10)( 8,11, 9)(13,18,15)(14,17,16)(19,35,28)(20,36,27)(21,31,29)(22,32,30)(23,34,25)(24,33,26)$ |
3J1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,12,16)( 2,11,15)( 3, 7,17)( 4, 8,18)( 5,10,14)( 6, 9,13)(19,26,32)(20,25,31)(21,27,34)(22,28,33)(23,29,36)(24,30,35)$ |
3J-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,14, 7)( 2,13, 8)( 3,16,10)( 4,15, 9)( 5,17,12)( 6,18,11)(19,28,35)(20,27,36)(21,29,31)(22,30,32)(23,25,34)(24,26,33)$ |
3K1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,17,10)( 2,18, 9)( 3,14,12)( 4,13,11)( 5,16, 7)( 6,15, 8)(19,26,32)(20,25,31)(21,27,34)(22,28,33)(23,29,36)(24,30,35)$ |
3K-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 7,14)( 2, 8,13)( 3,10,16)( 4, 9,15)( 5,12,17)( 6,11,18)(19,28,35)(20,27,36)(21,29,31)(22,30,32)(23,25,34)(24,26,33)$ |
3L1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 5, 3)( 2, 6, 4)( 7,12,10)( 8,11, 9)(13,18,15)(14,17,16)(19,32,26)(20,31,25)(21,34,27)(22,33,28)(23,36,29)(24,35,30)$ |
3L-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 7,14)( 2, 8,13)( 3,10,16)( 4, 9,15)( 5,12,17)( 6,11,18)(19,22,24)(20,21,23)(25,27,29)(26,28,30)(31,34,36)(32,33,35)$ |
3M1 | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 1,12,16)( 2,11,15)( 3, 7,17)( 4, 8,18)( 5,10,14)( 6, 9,13)$ |
3M-1 | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $(19,33,30)(20,34,29)(21,36,25)(22,35,26)(23,31,27)(24,32,28)$ |
4A1 | $4^{9}$ | $27$ | $4$ | $27$ | $( 1,26, 2,25)( 3,28, 4,27)( 5,30, 6,29)( 7,32,13,20)( 8,31,14,19)( 9,34,16,22)(10,33,15,21)(11,36,17,24)(12,35,18,23)$ |
4A-1 | $4^{9}$ | $27$ | $4$ | $27$ | $( 1,25, 2,26)( 3,27, 4,28)( 5,29, 6,30)( 7,20,13,32)( 8,19,14,31)( 9,22,16,34)(10,21,15,33)(11,24,17,36)(12,23,18,35)$ |
6A1 | $6^{6}$ | $9$ | $6$ | $30$ | $( 1, 4, 5, 2, 3, 6)( 7,15,12,13,10,18)( 8,16,11,14, 9,17)(19,34,24,31,22,36)(20,33,23,32,21,35)(25,28,29,26,27,30)$ |
6A-1 | $6^{6}$ | $9$ | $6$ | $30$ | $( 1, 6, 3, 2, 5, 4)( 7,18,10,13,12,15)( 8,17, 9,14,11,16)(19,36,22,31,24,34)(20,35,21,32,23,33)(25,30,27,26,29,28)$ |
6B | $6^{6}$ | $18$ | $6$ | $30$ | $( 1, 9, 5, 8, 3,11)( 2,10, 6, 7, 4,12)(13,16,18,14,15,17)(19,29,22,25,24,27)(20,30,21,26,23,28)(31,35,34,32,36,33)$ |
6C1 | $6^{3},2^{9}$ | $18$ | $6$ | $24$ | $( 1, 8)( 2, 7)( 3, 9)( 4,10)( 5,11)( 6,12)(13,14)(15,16)(17,18)(19,27,24,25,22,29)(20,28,23,26,21,30)(31,33,36,32,34,35)$ |
6C-1 | $6^{3},2^{9}$ | $18$ | $6$ | $24$ | $( 1,11, 3, 8, 5, 9)( 2,12, 4, 7, 6,10)(13,17,15,14,18,16)(19,25)(20,26)(21,28)(22,27)(23,30)(24,29)(31,32)(33,34)(35,36)$ |
12A1 | $12^{3}$ | $27$ | $12$ | $33$ | $( 1,29, 4,26, 5,27, 2,30, 3,25, 6,28)( 7,23,15,32,12,21,13,35,10,20,18,33)( 8,24,16,31,11,22,14,36, 9,19,17,34)$ |
12A-1 | $12^{3}$ | $27$ | $12$ | $33$ | $( 1,28, 6,25, 3,30, 2,27, 5,26, 4,29)( 7,33,18,20,10,35,13,21,12,32,15,23)( 8,34,17,19, 9,36,14,22,11,31,16,24)$ |
12A5 | $12^{3}$ | $27$ | $12$ | $33$ | $( 1,27, 6,26, 3,29, 2,28, 5,25, 4,30)( 7,21,18,32,10,23,13,33,12,20,15,35)( 8,22,17,31, 9,24,14,34,11,19,16,36)$ |
12A-5 | $12^{3}$ | $27$ | $12$ | $33$ | $( 1,30, 4,25, 5,28, 2,29, 3,26, 6,27)( 7,35,15,20,12,33,13,23,10,32,18,21)( 8,36,16,19,11,34,14,24, 9,31,17,22)$ |
Malle's constant $a(G)$: $1/12$
Character table
36 x 36 character table
Regular extensions
Data not computed