Show commands:
Magma
magma: G := TransitiveGroup(36, 49);
Group action invariants
Degree $n$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $49$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $F_9$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3,2,4)(5,13,18,29,34,25,22,10)(6,14,17,30,33,26,21,9)(7,16,20,31,36,28,24,12)(8,15,19,32,35,27,23,11), (1,22,27,6)(2,21,28,5)(3,24,25,8)(4,23,26,7)(9,35,19,29)(10,36,20,30)(11,34,18,31)(12,33,17,32)(13,14)(15,16) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $8$: $C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Degree 9: $C_3^2:C_8$
Degree 12: 12T46
Degree 18: 18T28
Low degree siblings
9T15, 12T46, 18T28, 24T81Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16},1^{4}$ | $9$ | $2$ | $16$ | $( 5,34)( 6,33)( 7,36)( 8,35)( 9,30)(10,29)(11,32)(12,31)(13,25)(14,26)(15,27)(16,28)(17,21)(18,22)(19,23)(20,24)$ |
3A | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,31,12)( 2,32,11)( 3,30, 9)( 4,29,10)( 5,21,15)( 6,22,16)( 7,23,13)( 8,24,14)(17,34,27)(18,33,28)(19,36,25)(20,35,26)$ |
4A1 | $4^{8},2^{2}$ | $9$ | $4$ | $26$ | $( 1, 2)( 3, 4)( 5,18,34,22)( 6,17,33,21)( 7,20,36,24)( 8,19,35,23)( 9,14,30,26)(10,13,29,25)(11,15,32,27)(12,16,31,28)$ |
4A-1 | $4^{8},2^{2}$ | $9$ | $4$ | $26$ | $( 1, 2)( 3, 4)( 5,22,34,18)( 6,21,33,17)( 7,24,36,20)( 8,23,35,19)( 9,26,30,14)(10,25,29,13)(11,27,32,15)(12,28,31,16)$ |
8A1 | $8^{4},4$ | $9$ | $8$ | $31$ | $( 1, 4, 2, 3)( 5,29,22,13,34,10,18,25)( 6,30,21,14,33, 9,17,26)( 7,31,24,16,36,12,20,28)( 8,32,23,15,35,11,19,27)$ |
8A-1 | $8^{4},4$ | $9$ | $8$ | $31$ | $( 1, 3, 2, 4)( 5,25,18,10,34,13,22,29)( 6,26,17, 9,33,14,21,30)( 7,28,20,12,36,16,24,31)( 8,27,19,11,35,15,23,32)$ |
8A3 | $8^{4},4$ | $9$ | $8$ | $31$ | $( 1, 3, 2, 4)( 5,13,18,29,34,25,22,10)( 6,14,17,30,33,26,21, 9)( 7,16,20,31,36,28,24,12)( 8,15,19,32,35,27,23,11)$ |
8A-3 | $8^{4},4$ | $9$ | $8$ | $31$ | $( 1, 4, 2, 3)( 5,10,22,25,34,29,18,13)( 6, 9,21,26,33,30,17,14)( 7,12,24,28,36,31,20,16)( 8,11,23,27,35,32,19,15)$ |
Malle's constant $a(G)$: $1/16$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.39 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 4A1 | 4A-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | ||
Size | 1 | 9 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | |
2 P | 1A | 1A | 3A | 2A | 2A | 4A-1 | 4A1 | 4A1 | 4A-1 | |
3 P | 1A | 2A | 1A | 4A-1 | 4A1 | 8A1 | 8A-1 | 8A3 | 8A-3 | |
Type | ||||||||||
72.39.1a | R | |||||||||
72.39.1b | R | |||||||||
72.39.1c1 | C | |||||||||
72.39.1c2 | C | |||||||||
72.39.1d1 | C | |||||||||
72.39.1d2 | C | |||||||||
72.39.1d3 | C | |||||||||
72.39.1d4 | C | |||||||||
72.39.8a | R |
magma: CharacterTable(G);