Show commands: Magma
Group invariants
| Abstract group: | $F_9$ |
| |
| Order: | $72=2^{3} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $49$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,3,2,4)(5,13,18,29,34,25,22,10)(6,14,17,30,33,26,21,9)(7,16,20,31,36,28,24,12)(8,15,19,32,35,27,23,11)$, $(1,22,27,6)(2,21,28,5)(3,24,25,8)(4,23,26,7)(9,35,19,29)(10,36,20,30)(11,34,18,31)(12,33,17,32)(13,14)(15,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $8$: $C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Degree 9: $C_3^2:C_8$
Degree 12: 12T46
Degree 18: 18T28
Low degree siblings
9T15, 12T46, 18T28, 24T81Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16},1^{4}$ | $9$ | $2$ | $16$ | $( 1,27)( 2,28)( 3,25)( 4,26)( 5,21)( 6,22)( 7,23)( 8,24)( 9,19)(10,20)(11,18)(12,17)(29,35)(30,36)(31,34)(32,33)$ |
| 3A | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,15,27)( 2,16,28)( 3,13,25)( 4,14,26)( 5,17,31)( 6,18,32)( 7,19,30)( 8,20,29)( 9,23,36)(10,24,35)(11,22,33)(12,21,34)$ |
| 4A1 | $4^{8},2^{2}$ | $9$ | $4$ | $26$ | $( 1,22,27, 6)( 2,21,28, 5)( 3,24,25, 8)( 4,23,26, 7)( 9,35,19,29)(10,36,20,30)(11,34,18,31)(12,33,17,32)(13,14)(15,16)$ |
| 4A-1 | $4^{8},2^{2}$ | $9$ | $4$ | $26$ | $( 1, 6,27,22)( 2, 5,28,21)( 3, 8,25,24)( 4, 7,26,23)( 9,29,19,35)(10,30,20,36)(11,31,18,34)(12,32,17,33)(13,14)(15,16)$ |
| 8A1 | $8^{4},4$ | $9$ | $8$ | $31$ | $( 1,36,22,20,27,30, 6,10)( 2,35,21,19,28,29, 5, 9)( 3,33,24,17,25,32, 8,12)( 4,34,23,18,26,31, 7,11)(13,16,14,15)$ |
| 8A-1 | $8^{4},4$ | $9$ | $8$ | $31$ | $( 1,10, 6,30,27,20,22,36)( 2, 9, 5,29,28,19,21,35)( 3,12, 8,32,25,17,24,33)( 4,11, 7,31,26,18,23,34)(13,15,14,16)$ |
| 8A3 | $8^{4},4$ | $9$ | $8$ | $31$ | $( 1,20, 6,36,27,10,22,30)( 2,19, 5,35,28, 9,21,29)( 3,17, 8,33,25,12,24,32)( 4,18, 7,34,26,11,23,31)(13,15,14,16)$ |
| 8A-3 | $8^{4},4$ | $9$ | $8$ | $31$ | $( 1,30,22,10,27,36, 6,20)( 2,29,21, 9,28,35, 5,19)( 3,32,24,12,25,33, 8,17)( 4,31,23,11,26,34, 7,18)(13,16,14,15)$ |
Malle's constant $a(G)$: $1/16$
Character table
| 1A | 2A | 3A | 4A1 | 4A-1 | 8A1 | 8A-1 | 8A3 | 8A-3 | ||
| Size | 1 | 9 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | |
| 2 P | 1A | 1A | 3A | 2A | 2A | 4A1 | 4A-1 | 4A-1 | 4A1 | |
| 3 P | 1A | 2A | 1A | 4A-1 | 4A1 | 8A3 | 8A-3 | 8A1 | 8A-1 | |
| Type | ||||||||||
| 72.39.1a | R | |||||||||
| 72.39.1b | R | |||||||||
| 72.39.1c1 | C | |||||||||
| 72.39.1c2 | C | |||||||||
| 72.39.1d1 | C | |||||||||
| 72.39.1d2 | C | |||||||||
| 72.39.1d3 | C | |||||||||
| 72.39.1d4 | C | |||||||||
| 72.39.8a | R |
Regular extensions
Data not computed