Group action invariants
| Degree $n$ : | $36$ | |
| Transitive number $t$ : | $49$ | |
| Group : | $F_9$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,2,4)(5,13,18,29,34,25,22,10)(6,14,17,30,33,26,21,9)(7,16,20,31,36,28,24,12)(8,15,19,32,35,27,23,11), (1,22,27,6)(2,21,28,5)(3,24,25,8)(4,23,26,7)(9,35,19,29)(10,36,20,30)(11,34,18,31)(12,33,17,32)(13,14)(15,16) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 8: $C_8$ Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: None
Degree 9: $C_3^2:C_8$
Degree 12: 12T46
Degree 18: 18T28
Low degree siblings
9T15Siblings are shown with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5,34)( 6,33)( 7,36)( 8,35)( 9,30)(10,29)(11,32)(12,31)(13,25)(14,26)(15,27) (16,28)(17,21)(18,22)(19,23)(20,24)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 2, 2 $ | $9$ | $4$ | $( 1, 2)( 3, 4)( 5,18,34,22)( 6,17,33,21)( 7,20,36,24)( 8,19,35,23) ( 9,14,30,26)(10,13,29,25)(11,15,32,27)(12,16,31,28)$ |
| $ 4, 4, 4, 4, 4, 4, 4, 4, 2, 2 $ | $9$ | $4$ | $( 1, 2)( 3, 4)( 5,22,34,18)( 6,21,33,17)( 7,24,36,20)( 8,23,35,19) ( 9,26,30,14)(10,25,29,13)(11,27,32,15)(12,28,31,16)$ |
| $ 8, 8, 8, 8, 4 $ | $9$ | $8$ | $( 1, 3, 2, 4)( 5,13,18,29,34,25,22,10)( 6,14,17,30,33,26,21, 9) ( 7,16,20,31,36,28,24,12)( 8,15,19,32,35,27,23,11)$ |
| $ 8, 8, 8, 8, 4 $ | $9$ | $8$ | $( 1, 3, 2, 4)( 5,25,18,10,34,13,22,29)( 6,26,17, 9,33,14,21,30) ( 7,28,20,12,36,16,24,31)( 8,27,19,11,35,15,23,32)$ |
| $ 8, 8, 8, 8, 4 $ | $9$ | $8$ | $( 1, 4, 2, 3)( 5,10,22,25,34,29,18,13)( 6, 9,21,26,33,30,17,14) ( 7,12,24,28,36,31,20,16)( 8,11,23,27,35,32,19,15)$ |
| $ 8, 8, 8, 8, 4 $ | $9$ | $8$ | $( 1, 4, 2, 3)( 5,29,22,13,34,10,18,25)( 6,30,21,14,33, 9,17,26) ( 7,31,24,16,36,12,20,28)( 8,32,23,15,35,11,19,27)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 5,34)( 2, 6,33)( 3, 7,36)( 4, 8,35)( 9,13,19)(10,14,20)(11,16,18) (12,15,17)(21,27,31)(22,28,32)(23,25,30)(24,26,29)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 39] |
| Character table: |
2 3 3 3 3 3 3 3 3 .
3 2 . . . . . . . 2
1a 2a 4a 4b 8a 8b 8c 8d 3a
2P 1a 1a 2a 2a 4a 4a 4b 4b 3a
3P 1a 2a 4b 4a 8d 8c 8b 8a 1a
5P 1a 2a 4a 4b 8b 8a 8d 8c 3a
7P 1a 2a 4b 4a 8c 8d 8a 8b 3a
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 -1 -1 1
X.3 1 -1 A -A B -B /B -/B 1
X.4 1 -1 A -A -B B -/B /B 1
X.5 1 -1 -A A -/B /B -B B 1
X.6 1 -1 -A A /B -/B B -B 1
X.7 1 1 -1 -1 A A -A -A 1
X.8 1 1 -1 -1 -A -A A A 1
X.9 8 . . . . . . . -1
A = -E(4)
= -Sqrt(-1) = -i
B = -E(8)^3
|