Properties

Label 36T49
Degree $36$
Order $72$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $F_9$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(36, 49);
 

Group action invariants

Degree $n$:  $36$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $49$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $F_9$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $4$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,3,2,4)(5,13,18,29,34,25,22,10)(6,14,17,30,33,26,21,9)(7,16,20,31,36,28,24,12)(8,15,19,32,35,27,23,11), (1,22,27,6)(2,21,28,5)(3,24,25,8)(4,23,26,7)(9,35,19,29)(10,36,20,30)(11,34,18,31)(12,33,17,32)(13,14)(15,16)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$
$8$:  $C_8$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $C_4$

Degree 6: None

Degree 9: $C_3^2:C_8$

Degree 12: 12T46

Degree 18: 18T28

Low degree siblings

9T15, 12T46, 18T28, 24T81

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{36}$ $1$ $1$ $0$ $()$
2A $2^{16},1^{4}$ $9$ $2$ $16$ $( 5,34)( 6,33)( 7,36)( 8,35)( 9,30)(10,29)(11,32)(12,31)(13,25)(14,26)(15,27)(16,28)(17,21)(18,22)(19,23)(20,24)$
3A $3^{12}$ $8$ $3$ $24$ $( 1,31,12)( 2,32,11)( 3,30, 9)( 4,29,10)( 5,21,15)( 6,22,16)( 7,23,13)( 8,24,14)(17,34,27)(18,33,28)(19,36,25)(20,35,26)$
4A1 $4^{8},2^{2}$ $9$ $4$ $26$ $( 1, 2)( 3, 4)( 5,18,34,22)( 6,17,33,21)( 7,20,36,24)( 8,19,35,23)( 9,14,30,26)(10,13,29,25)(11,15,32,27)(12,16,31,28)$
4A-1 $4^{8},2^{2}$ $9$ $4$ $26$ $( 1, 2)( 3, 4)( 5,22,34,18)( 6,21,33,17)( 7,24,36,20)( 8,23,35,19)( 9,26,30,14)(10,25,29,13)(11,27,32,15)(12,28,31,16)$
8A1 $8^{4},4$ $9$ $8$ $31$ $( 1, 4, 2, 3)( 5,29,22,13,34,10,18,25)( 6,30,21,14,33, 9,17,26)( 7,31,24,16,36,12,20,28)( 8,32,23,15,35,11,19,27)$
8A-1 $8^{4},4$ $9$ $8$ $31$ $( 1, 3, 2, 4)( 5,25,18,10,34,13,22,29)( 6,26,17, 9,33,14,21,30)( 7,28,20,12,36,16,24,31)( 8,27,19,11,35,15,23,32)$
8A3 $8^{4},4$ $9$ $8$ $31$ $( 1, 3, 2, 4)( 5,13,18,29,34,25,22,10)( 6,14,17,30,33,26,21, 9)( 7,16,20,31,36,28,24,12)( 8,15,19,32,35,27,23,11)$
8A-3 $8^{4},4$ $9$ $8$ $31$ $( 1, 4, 2, 3)( 5,10,22,25,34,29,18,13)( 6, 9,21,26,33,30,17,14)( 7,12,24,28,36,31,20,16)( 8,11,23,27,35,32,19,15)$

Malle's constant $a(G)$:     $1/16$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $72=2^{3} \cdot 3^{2}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  72.39
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 4A1 4A-1 8A1 8A-1 8A3 8A-3
Size 1 9 8 9 9 9 9 9 9
2 P 1A 1A 3A 2A 2A 4A-1 4A1 4A1 4A-1
3 P 1A 2A 1A 4A-1 4A1 8A1 8A-1 8A3 8A-3
Type
72.39.1a R 1 1 1 1 1 1 1 1 1
72.39.1b R 1 1 1 1 1 1 1 1 1
72.39.1c1 C 1 1 1 1 1 i i i i
72.39.1c2 C 1 1 1 1 1 i i i i
72.39.1d1 C 1 1 1 ζ82 ζ82 ζ83 ζ8 ζ8 ζ83
72.39.1d2 C 1 1 1 ζ82 ζ82 ζ8 ζ83 ζ83 ζ8
72.39.1d3 C 1 1 1 ζ82 ζ82 ζ83 ζ8 ζ8 ζ83
72.39.1d4 C 1 1 1 ζ82 ζ82 ζ8 ζ83 ζ83 ζ8
72.39.8a R 8 0 1 0 0 0 0 0 0

magma: CharacterTable(G);