Show commands: Magma
Group invariants
Abstract group: | $C_9:C_6^2$ |
| |
Order: | $324=2^{2} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $480$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $6$ |
| |
Generators: | $(1,14,8,4,16,11,5,17,10,2,13,7,3,15,12,6,18,9)(19,34,27,22,36,29,24,32,25,20,33,28,21,35,30,23,31,26)$, $(1,31,3,36,5,33)(2,32,4,35,6,34)(7,26)(8,25)(9,28)(10,27)(11,29)(12,30)(13,24,18,19,16,21)(14,23,17,20,15,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ x 4 $4$: $C_2^2$ $6$: $S_3$, $C_6$ x 12 $9$: $C_3^2$ $12$: $D_{6}$, $C_6\times C_2$ x 4 $18$: $S_3\times C_3$ x 4, $C_6 \times C_3$ x 3 $36$: $C_6\times S_3$ x 4, 36T4 $54$: $(C_9:C_3):C_2$, $C_3^2\times S_3$ $108$: 18T45, 36T64 $162$: 18T83 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 9: None
Degree 12: $D_6$
Degree 18: 18T83
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
60 x 60 character table
Regular extensions
Data not computed