Show commands: Magma
Group invariants
| Abstract group: | $C_6^4.D_6^2:D_6$ |
| |
| Order: | $2239488=2^{10} \cdot 3^{7}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $43671$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,13,6,17,4,16)(2,14,5,18,3,15)(7,10)(8,9)(19,25,21,28,24,30,20,26,22,27,23,29)(31,35)(32,36)$, $(1,18,5,16,4,14,2,17,6,15,3,13)(7,8)(9,11)(10,12)(19,26,22,28,24,29)(20,25,21,27,23,30)(31,34)(32,33)$, $(1,30,5,26)(2,29,6,25)(3,28,4,27)(7,23,9,19)(8,24,10,20)(11,21,12,22)(13,33,18,31)(14,34,17,32)(15,35,16,36)$, $(1,17,4,13,6,16)(2,18,3,14,5,15)(7,8)(9,11)(10,12)(19,29,22,28,24,26)(20,30,21,27,23,25)(31,36,34,32,35,33)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $6$: $S_3$ $8$: $D_{4}$ x 12, $C_2^3$ x 15 $12$: $D_{6}$ x 7 $16$: $D_4\times C_2$ x 18, $C_2^4$ $24$: $S_4$, $S_3 \times C_2^2$ x 7 $32$: $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3 $48$: $S_4\times C_2$ x 7, 12T28 x 6, 24T30 $64$: 16T105 $72$: $C_3^2:D_4$ $96$: 12T48 x 7, 24T143 x 3 $144$: 12T77 x 3 $192$: $V_4^2:(S_3\times C_2)$, 12T86 x 6, 24T360, 24T400 $288$: 12T125 x 2, 24T654 $384$: 12T136 x 3, 24T1076 x 3 $432$: 12T156 $576$: 24T1475 $768$: 12T186 x 6, 24T2202, 24T2481 $864$: 24T2646 $1536$: 24T4787 x 3 $1728$: 24T4923, 24T4943 $3072$: 24T7067 $3456$: 36T4476 $3888$: 18T440 $6912$: 24T9626, 36T6999 $7776$: 36T7260 $13824$: 36T9778 $15552$: 36T10081, 36T10082 $27648$: 36T13216 $31104$: 36T13539 $34992$: 18T675 $62208$: 36T17293, 36T17301 $69984$: 36T17550 $124416$: 36T20815 $139968$: 36T21097, 36T21098 $248832$: 36T25133 $279936$: 36T25385 $559872$: 36T30523, 36T30531 $1119744$: 36T36567 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Degree 9: None
Degree 12: 12T193
Degree 18: 18T675
Low degree siblings
36T43671 x 95Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed