Show commands: Magma
Group invariants
| Abstract group: | $C_3^2:D_6\times S_4$ |
| |
| Order: | $2592=2^{5} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $3967$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,25,15,3,27,13)(2,26,14)(4,11,16,22,30,35)(5,10,17,24,29,34)(6,12,18,23,28,36)(7,32,20,8,31,21)(9,33,19)$, $(1,18,20,26,29,8)(2,16,21,25,28,9)(3,17,19,27,30,7)(4,33,13)(5,31,15)(6,32,14)(10,36,12,35,11,34)(22,23,24)$, $(1,11,21,3,12,20)(2,10,19)(4,5)(7,26,35,9,25,34)(8,27,36)(13,22,31)(14,23,33,15,24,32)(17,18)(28,30)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 3 $8$: $C_2^3$ $12$: $D_{6}$ x 9 $24$: $S_4$, $S_3 \times C_2^2$ x 3 $36$: $S_3^2$ x 3 $48$: $S_4\times C_2$ x 3 $72$: 12T37 x 3 $96$: 12T48 $108$: $C_3^2 : D_{6} $ $144$: 12T83 x 2 $216$: 12T117, 18T94 $288$: 18T111 x 2 $648$: 18T191 $864$: 24T2661 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: $S_4$
Degree 6: None
Degree 9: $C_3^2 : D_{6} $
Degree 12: 12T83
Degree 18: None
Low degree siblings
36T3967Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
55 x 55 character table
Regular extensions
Data not computed