Show commands: Magma
Group invariants
Abstract group: | $S_3\times C_6^2:D_6$ |
| |
Order: | $2592=2^{5} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $3593$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,2)(3,4)(5,6)(7,17,8,18)(9,16,10,15)(11,13,12,14)(19,32,22,34,24,36,20,31,21,33,23,35)(25,29,27,26,30,28)$, $(1,21,4,20,6,24,2,22,3,19,5,23)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,30,18,26,15,27,14,29,17,25,16,28)$, $(1,10,17,3,11,13)(2,9,18,4,12,14)(5,8,16)(6,7,15)(19,26,35,24,28,34)(20,25,36,23,27,33)(21,29,31)(22,30,32)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 3 $8$: $C_2^3$ $12$: $D_{6}$ x 9 $24$: $S_4$, $S_3 \times C_2^2$ x 3 $36$: $S_3^2$ x 3 $48$: $S_4\times C_2$ x 3 $72$: 12T37 x 3 $96$: 12T48 $108$: $C_3^2 : D_{6} $ $144$: 12T83 x 2 $216$: 12T117, 18T94 $288$: 18T111 x 2 $432$: 18T152 $648$: 18T191 $864$: 18T228, 24T2661 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$, $S_4$, $S_4\times C_2$
Degree 9: None
Degree 12: $C_2 \times S_4$
Degree 18: 18T191
Low degree siblings
36T3592, 36T3594, 36T3595Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
60 x 60 character table
Regular extensions
Data not computed