Show commands: Magma
Group invariants
| Abstract group: | $C_2\times C_6^3:C_6$ |
| |
| Order: | $2592=2^{5} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $3524$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,15,30,2,16,29)(3,13,32,4,14,31)(5,20,23,6,19,24)(7,18,21,8,17,22)(9,27,34,10,28,33)(11,26,35,12,25,36)$, $(1,14,29,4,15,32)(2,13,30,3,16,31)(5,12,24,35,20,26)(6,11,23,36,19,25)(7,9,22,33,18,28)(8,10,21,34,17,27)$, $(1,15,28)(2,16,27)(3,13,25)(4,14,26)(5,9,29,33,20,24)(6,10,30,34,19,23)(7,12,32,35,18,22)(8,11,31,36,17,21)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $3$: $C_3$ $4$: $C_2^2$ x 7 $6$: $S_3$, $C_6$ x 7 $8$: $C_2^3$ $12$: $A_4$, $D_{6}$ x 3, $C_6\times C_2$ x 7 $18$: $S_3\times C_3$ $24$: $A_4\times C_2$ x 7, $S_3 \times C_2^2$, 24T3 $36$: $C_6\times S_3$ x 3 $48$: $C_2^2 \times A_4$ x 7 $54$: $C_3^2 : C_6$ $72$: 12T43, 24T68 $96$: 24T135 $108$: 18T41 x 3 $144$: 18T60 x 3 $162$: $(C_3^3:C_3):C_2$ $216$: 18T100, 36T204 $288$: 36T334 $324$: 18T125 x 3 $432$: 18T148 x 3 $648$: 18T200, 36T1023 $864$: 36T1288 $1296$: 18T282 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$, $A_4\times C_2$ x 2
Degree 9: $(C_3^3:C_3):C_2$
Degree 12: $C_2^2 \times A_4$
Low degree siblings
36T3524 x 107, 36T3725 x 72Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
112 x 112 character table
Regular extensions
Data not computed