Show commands: Magma
Group invariants
| Abstract group: | $C_3^6.C_2\wr D_6$ |
| |
| Order: | $559872=2^{8} \cdot 3^{7}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $30523$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,33,6,35)(2,34,5,36)(3,32,4,31)(7,25,10,30)(8,26,9,29)(11,28)(12,27)(13,23,17,20)(14,24,18,19)(15,21)(16,22)$, $(1,18,6,15,3,14,2,17,5,16,4,13)(7,9)(8,10)(11,12)(19,28)(20,27)(21,30)(22,29)(23,25)(24,26)(33,36)(34,35)$, $(1,10,13,2,9,14)(3,12,17,4,11,18)(5,7,15,6,8,16)(19,29,31,22,26,35)(20,30,32,21,25,36)(23,27,33)(24,28,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 3 $16$: $D_4\times C_2$ $24$: $S_4$, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 3, 12T28 $72$: $C_3^2:D_4$ $96$: 12T48 $144$: 12T77 $192$: $V_4^2:(S_3\times C_2)$, 12T86 $384$: 12T136 $432$: 12T156 $768$: 12T186 $1728$: 24T4943 $3888$: 18T440 $6912$: 24T9626 $15552$: 36T10082 $34992$: 18T675 $62208$: 36T17293 $139968$: 36T21098 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Degree 9: None
Degree 12: 12T193
Degree 18: 18T675
Low degree siblings
36T30523 x 5, 36T30524 x 6, 36T30525 x 6, 36T30526 x 6, 36T30527 x 6, 36T30528 x 6, 36T30529 x 6, 36T30530 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed