Show commands: Magma
Group invariants
| Abstract group: | $(C_2^2\times D_6):D_{18}$ |
| |
| Order: | $1728=2^{6} \cdot 3^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $2403$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,4)(2,3)(7,17,8,18)(9,16,10,15)(11,14,12,13)(19,33,20,34)(21,32,22,31)(23,35,24,36)(27,30)(28,29)$, $(1,28,2,27)(3,26,4,25)(5,30,6,29)(7,23)(8,24)(9,21)(10,22)(11,20)(12,19)(13,36)(14,35)(15,33)(16,34)(17,32)(18,31)$, $(1,35,4,34,6,32)(2,36,3,33,5,31)(7,30,9,27,11,26)(8,29,10,28,12,25)(13,24,15,22,18,19)(14,23,16,21,17,20)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 6 $16$: $D_4\times C_2$ $18$: $D_{9}$ $24$: $S_4$, $S_3 \times C_2^2$ x 2 $36$: $S_3^2$, $D_{18}$ x 3 $48$: $S_4\times C_2$ x 3, 12T28 x 2 $72$: 12T37, 18T38, 36T48 $96$: 12T48 $108$: 18T50 $144$: 12T81, 12T83, 18T67 x 3, 36T135 $192$: 12T86 $216$: 36T228 $288$: 18T111, 36T366 $432$: 36T605, 36T606 $576$: 36T761, 36T783 $864$: 36T1313 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Degree 9: None
Degree 12: 12T86
Degree 18: 18T50
Low degree siblings
36T2403 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
75 x 75 character table
Regular extensions
Data not computed