Show commands: Magma
Group invariants
| Abstract group: | $C_6^4.C_6:D_{12}$ |
| |
| Order: | $186624=2^{8} \cdot 3^{6}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $23881$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,20,11,25,18,32)(2,19,12,26,17,31)(3,24,9,28,13,36)(4,23,10,27,14,35)(5,22,7,29,16,33)(6,21,8,30,15,34)$, $(1,15,10,2,16,9)(3,18,7,4,17,8)(5,14,11,6,13,12)(19,32,30,20,31,29)(21,33,27,22,34,28)(23,36,25,24,35,26)$, $(7,17)(8,18)(9,15)(10,16)(11,13)(12,14)(19,27)(20,28)(21,30)(22,29)(23,26)(24,25)(31,36)(32,35)(33,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 6 $16$: $D_4\times C_2$ $24$: $S_3 \times C_2^2$ x 2, $D_{12}$ x 2, $(C_6\times C_2):C_2$ x 2 $36$: $S_3^2$ $48$: 24T25, 24T29 $72$: $C_3^2:D_4$, 12T37, 12T38 x 2 $144$: 12T77, 24T230 $216$: 12T116, 12T118 $432$: 24T1292, 24T1304 $576$: $(A_4\wr C_2):C_2$ $648$: 12T169 $1152$: 12T195, 12T196 x 2 $1296$: 24T2850 $2304$: 24T5079 $5832$: 18T507 $10368$: 24T10167 $11664$: 36T9205 $20736$: 36T11869 $93312$: 36T19600 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $S_3^2$
Degree 9: None
Degree 12: 12T196
Degree 18: 18T507
Low degree siblings
36T23880 x 6, 36T23881 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed