Show commands: Magma
Group invariants
Abstract group: | $F_9:C_2$ |
| |
Order: | $144=2^{4} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $175$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,30,27,14,34,20,11,23)(2,29,28,13,33,19,12,24)(3,31,26,15,36,18,10,22)(4,32,25,16,35,17,9,21)(5,7,6,8)$, $(1,14,32,19)(2,13,31,20)(3,16,30,18)(4,15,29,17)(5,23,28,35)(6,24,27,36)(7,21,25,33)(8,22,26,34)(9,11)(10,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $16$: $QD_{16}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: None
Degree 9: $(C_3^2:C_8):C_2$
Degree 12: 12T84
Degree 18: 18T73
Low degree siblings
9T19, 12T84, 18T68, 18T71, 18T73, 24T278, 24T279, 24T280, 36T171, 36T172Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16},1^{4}$ | $9$ | $2$ | $16$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,24)(10,23)(11,21)(12,22)(13,30)(14,29)(15,32)(16,31)(17,28)(18,27)(19,26)(20,25)$ |
2B | $2^{15},1^{6}$ | $12$ | $2$ | $15$ | $( 1,22)( 2,21)( 3,23)( 4,24)( 5,28)( 6,27)( 7,26)( 8,25)( 9,10)(13,14)(19,20)(29,36)(30,35)(31,33)(32,34)$ |
3A | $3^{12}$ | $8$ | $3$ | $24$ | $( 1, 5,34)( 2, 6,33)( 3, 7,36)( 4, 8,35)( 9,13,20)(10,14,19)(11,16,18)(12,15,17)(21,27,31)(22,28,32)(23,26,29)(24,25,30)$ |
4A | $4^{8},2^{2}$ | $18$ | $4$ | $26$ | $( 1,16, 5,31)( 2,15, 6,32)( 3,14, 7,29)( 4,13, 8,30)( 9,26,24,19)(10,25,23,20)(11,28,21,17)(12,27,22,18)(33,34)(35,36)$ |
4B | $4^{8},2^{2}$ | $36$ | $4$ | $26$ | $( 1, 4)( 2, 3)( 5,10,34,29)( 6, 9,33,30)( 7,11,36,31)( 8,12,35,32)(13,18,25,21)(14,17,26,22)(15,19,28,23)(16,20,27,24)$ |
6A | $6^{5},3^{2}$ | $24$ | $6$ | $29$ | $( 1,32, 5,22,34,28)( 2,31, 6,21,33,27)( 3,29, 7,23,36,26)( 4,30, 8,24,35,25)( 9,19,13,10,20,14)(11,18,16)(12,17,15)$ |
8A1 | $8^{4},4$ | $18$ | $8$ | $31$ | $( 1,24,16,19, 5, 9,31,26)( 2,23,15,20, 6,10,32,25)( 3,21,14,17, 7,11,29,28)( 4,22,13,18, 8,12,30,27)(33,35,34,36)$ |
8A-1 | $8^{4},4$ | $18$ | $8$ | $31$ | $( 1,26,31, 9, 5,19,16,24)( 2,25,32,10, 6,20,15,23)( 3,28,29,11, 7,17,14,21)( 4,27,30,12, 8,18,13,22)(33,36,34,35)$ |
Malle's constant $a(G)$: $1/15$
Character table
1A | 2A | 2B | 3A | 4A | 4B | 6A | 8A1 | 8A-1 | ||
Size | 1 | 9 | 12 | 8 | 18 | 36 | 24 | 18 | 18 | |
2 P | 1A | 1A | 1A | 3A | 2A | 2A | 3A | 4A | 4A | |
3 P | 1A | 2A | 2B | 1A | 4A | 4B | 2B | 8A1 | 8A-1 | |
Type | ||||||||||
144.182.1a | R | |||||||||
144.182.1b | R | |||||||||
144.182.1c | R | |||||||||
144.182.1d | R | |||||||||
144.182.2a | R | |||||||||
144.182.2b1 | C | |||||||||
144.182.2b2 | C | |||||||||
144.182.8a | R | |||||||||
144.182.8b | R |
Regular extensions
Data not computed