Show commands: Magma
Group invariants
Abstract group: | $F_9:C_2$ |
| |
Order: | $144=2^{4} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $171$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,33,25,31)(2,34,26,32)(3,35,27,30)(4,36,28,29)(5,20,22,11)(6,19,21,12)(7,17,23,9)(8,18,24,10)(13,14)$, $(1,6,10,14,31,21)(2,5,9,13,32,22)(3,7,12,16,29,23)(4,8,11,15,30,24)(17,36,26,19,34,27)(18,35,25,20,33,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $16$: $QD_{16}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: None
Degree 9: $(C_3^2:C_8):C_2$
Degree 12: None
Degree 18: 18T68
Low degree siblings
9T19, 12T84, 18T68, 18T71, 18T73, 24T278, 24T279, 24T280, 36T172, 36T175Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16},1^{4}$ | $9$ | $2$ | $16$ | $( 1,15)( 2,16)( 3,13)( 4,14)( 5,12)( 6,11)( 7, 9)( 8,10)(17,34)(18,33)(19,36)(20,35)(21,30)(22,29)(23,32)(24,31)$ |
2B | $2^{18}$ | $12$ | $2$ | $18$ | $( 1,30)( 2,29)( 3,32)( 4,31)( 5,16)( 6,15)( 7,13)( 8,14)( 9,12)(10,11)(17,27)(18,28)(19,26)(20,25)(21,24)(22,23)(33,35)(34,36)$ |
3A | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,15,25)( 2,16,26)( 3,13,27)( 4,14,28)( 5,19,29)( 6,20,30)( 7,17,32)( 8,18,31)( 9,23,34)(10,24,33)(11,21,35)(12,22,36)$ |
4A | $4^{8},2^{2}$ | $18$ | $4$ | $26$ | $( 1,34,15,17)( 2,33,16,18)( 3,35,13,20)( 4,36,14,19)( 5,30,12,21)( 6,29,11,22)( 7,31, 9,24)( 8,32,10,23)(25,26)(27,28)$ |
4B | $4^{8},2,1^{2}$ | $36$ | $4$ | $25$ | $( 3, 4)( 5,30,36,11)( 6,29,35,12)( 7,32,34, 9)( 8,31,33,10)(13,21,27,20)(14,22,28,19)(15,24,25,18)(16,23,26,17)$ |
6A | $6^{6}$ | $24$ | $6$ | $30$ | $( 1,20,15,30,25, 6)( 2,19,16,29,26, 5)( 3,17,13,32,27, 7)( 4,18,14,31,28, 8)( 9,36,23,12,34,22)(10,35,24,11,33,21)$ |
8A1 | $8^{4},4$ | $18$ | $8$ | $31$ | $( 1,30,34,12,15,21,17, 5)( 2,29,33,11,16,22,18, 6)( 3,31,35, 9,13,24,20, 7)( 4,32,36,10,14,23,19, 8)(25,28,26,27)$ |
8A-1 | $8^{4},4$ | $18$ | $8$ | $31$ | $( 1, 5,17,21,15,12,34,30)( 2, 6,18,22,16,11,33,29)( 3, 7,20,24,13, 9,35,31)( 4, 8,19,23,14,10,36,32)(25,27,26,28)$ |
Malle's constant $a(G)$: $1/16$
Character table
1A | 2A | 2B | 3A | 4A | 4B | 6A | 8A1 | 8A-1 | ||
Size | 1 | 9 | 12 | 8 | 18 | 36 | 24 | 18 | 18 | |
2 P | 1A | 1A | 1A | 3A | 2A | 2A | 3A | 4A | 4A | |
3 P | 1A | 2A | 2B | 1A | 4A | 4B | 2B | 8A1 | 8A-1 | |
Type | ||||||||||
144.182.1a | R | |||||||||
144.182.1b | R | |||||||||
144.182.1c | R | |||||||||
144.182.1d | R | |||||||||
144.182.2a | R | |||||||||
144.182.2b1 | C | |||||||||
144.182.2b2 | C | |||||||||
144.182.8a | R | |||||||||
144.182.8b | R |
Regular extensions
Data not computed