Show commands: Magma
Group invariants
Abstract group: | $C_3^3:S_3^2$ |
| |
Order: | $972=2^{2} \cdot 3^{5}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $1542$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $3$ |
| |
Generators: | $(1,20,3,21,2,19)(4,10)(5,11)(6,12)(7,15,8,14,9,13)(16,36)(17,35)(18,34)(22,30)(23,28)(24,29)(25,32,27,31,26,33)$, $(1,29)(2,28)(3,30)(4,27)(5,25)(6,26)(7,22,9,24,8,23)(10,20,11,19,12,21)(13,16)(14,18)(15,17)(31,36,32,34,33,35)$, $(1,30)(2,29)(3,28)(4,27)(5,25)(6,26)(7,23,8,24,9,22)(10,20,12,21,11,19)(13,18)(14,17)(15,16)(31,36,33,35,32,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 6 $12$: $D_{6}$ x 6 $18$: $C_3^2:C_2$ $36$: $S_3^2$ x 9, 18T12 $54$: $(C_3^2:C_3):C_2$ $108$: 12T71 x 4, 18T52, 18T58 x 2 $324$: 18T135 x 2, 36T521 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 9: None
Degree 12: $D_6$
Degree 18: None
Low degree siblings
36T1542 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
51 x 51 character table
Regular extensions
Data not computed