Properties

Label 36T150
36T150 1 10 1->10 34 1->34 2 9 2->9 33 2->33 3 4 3->4 11 3->11 35 3->35 12 4->12 36 4->36 5 7 5->7 18 5->18 5->34 6 8 6->8 17 6->17 6->33 19 7->19 7->36 20 8->20 8->35 16 9->16 25 9->25 30 9->30 15 10->15 26 10->26 29 10->29 13 11->13 27 11->27 31 11->31 14 12->14 28 12->28 32 12->32 21 13->21 13->26 22 14->22 14->25 23 15->23 15->27 24 16->24 16->28 17->19 17->23 17->32 18->20 18->24 18->31 19->22 19->29 20->21 20->30 21->1 21->28 22->2 22->27 23->4 23->25 24->3 24->26 25->35 26->36 27->34 28->33 29->8 29->31 30->7 30->32 31->5 32->6 33->15 34->16 35->14 36->13
Degree $36$
Order $144$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $S_3\times D_{12}$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(36, 150);
 

Group invariants

Abstract group:  $S_3\times D_{12}$
Copy content magma:IdentifyGroup(G);
 
Order:  $144=2^{4} \cdot 3^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $36$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $150$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,10,26,36,13,21)(2,9,25,35,14,22)(3,11,27,34,16,24)(4,12,28,33,15,23)(5,18,31)(6,17,32)(7,19,29,8,20,30)$, $(1,34)(2,33)(3,35)(4,36)(5,7)(6,8)(9,16)(10,15)(11,13)(12,14)(17,19)(18,20)(21,28)(22,27)(23,25)(24,26)(29,31)(30,32)$, $(3,4)(5,34)(6,33)(7,36)(8,35)(9,30)(10,29)(11,31)(12,32)(13,26)(14,25)(15,27)(16,28)(17,23)(18,24)(19,22)(20,21)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$6$:  $S_3$ x 2
$8$:  $D_{4}$ x 2, $C_2^3$
$12$:  $D_{6}$ x 6
$16$:  $D_4\times C_2$
$24$:  $S_3 \times C_2^2$ x 2, $D_{12}$ x 2
$36$:  $S_3^2$
$48$:  12T28, 24T29
$72$:  12T37

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$ x 2

Degree 4: $D_{4}$

Degree 6: $D_{6}$ x 2

Degree 9: $S_3^2$

Degree 12: $D_{12}$, 12T28

Degree 18: 18T29

Low degree siblings

24T229 x 2, 36T150 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{36}$ $1$ $1$ $0$ $()$
2A $2^{18}$ $1$ $2$ $18$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$
2B $2^{12},1^{12}$ $3$ $2$ $12$ $( 9,22)(10,21)(11,24)(12,23)(13,26)(14,25)(15,28)(16,27)(17,32)(18,31)(19,30)(20,29)$
2C $2^{18}$ $3$ $2$ $18$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30)(33,34)(35,36)$
2D $2^{18}$ $6$ $2$ $18$ $( 1,34)( 2,33)( 3,35)( 4,36)( 5, 7)( 6, 8)( 9,16)(10,15)(11,13)(12,14)(17,19)(18,20)(21,28)(22,27)(23,25)(24,26)(29,31)(30,32)$
2E $2^{15},1^{6}$ $6$ $2$ $15$ $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,10)(13,20)(14,19)(15,18)(16,17)(21,22)(25,30)(26,29)(27,32)(28,31)(35,36)$
2F $2^{17},1^{2}$ $18$ $2$ $17$ $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,18)( 6,17)( 7,19)( 8,20)(13,36)(14,35)(15,33)(16,34)(21,26)(22,25)(23,28)(24,27)(29,30)$
2G $2^{18}$ $18$ $2$ $18$ $( 1,32)( 2,31)( 3,30)( 4,29)( 5,25)( 6,26)( 7,28)( 8,27)( 9,11)(10,12)(13,17)(14,18)(15,20)(16,19)(21,33)(22,34)(23,36)(24,35)$
3A $3^{12}$ $2$ $3$ $24$ $( 1, 8,35)( 2, 7,36)( 3, 6,34)( 4, 5,33)( 9,13,19)(10,14,20)(11,16,17)(12,15,18)(21,25,29)(22,26,30)(23,28,31)(24,27,32)$
3B $3^{12}$ $2$ $3$ $24$ $( 1,26,13)( 2,25,14)( 3,27,16)( 4,28,15)( 5,31,18)( 6,32,17)( 7,29,20)( 8,30,19)( 9,35,22)(10,36,21)(11,34,24)(12,33,23)$
3C $3^{12}$ $4$ $3$ $24$ $( 1,22,19)( 2,21,20)( 3,24,17)( 4,23,18)( 5,28,12)( 6,27,11)( 7,25,10)( 8,26, 9)(13,35,30)(14,36,29)(15,33,31)(16,34,32)$
4A $4^{9}$ $2$ $4$ $27$ $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)(17,19,18,20)(21,24,22,23)(25,27,26,28)(29,32,30,31)(33,36,34,35)$
4B $4^{9}$ $6$ $4$ $27$ $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,23,10,24)(11,22,12,21)(13,28,14,27)(15,25,16,26)(17,30,18,29)(19,31,20,32)(33,36,34,35)$
6A $6^{6}$ $2$ $6$ $30$ $( 1, 7,35, 2, 8,36)( 3, 5,34, 4, 6,33)( 9,14,19,10,13,20)(11,15,17,12,16,18)(21,26,29,22,25,30)(23,27,31,24,28,32)$
6B $6^{6}$ $2$ $6$ $30$ $( 1,14,26, 2,13,25)( 3,15,27, 4,16,28)( 5,17,31, 6,18,32)( 7,19,29, 8,20,30)( 9,21,35,10,22,36)(11,23,34,12,24,33)$
6C $6^{6}$ $4$ $6$ $30$ $( 1,20,22, 2,19,21)( 3,18,24, 4,17,23)( 5,11,28, 6,12,27)( 7, 9,25, 8,10,26)(13,29,35,14,30,36)(15,32,33,16,31,34)$
6D $6^{4},3^{4}$ $6$ $6$ $28$ $( 1,35, 8)( 2,36, 7)( 3,34, 6)( 4,33, 5)( 9,30,13,22,19,26)(10,29,14,21,20,25)(11,32,16,24,17,27)(12,31,15,23,18,28)$
6E $6^{6}$ $6$ $6$ $30$ $( 1, 7,35, 2, 8,36)( 3, 5,34, 4, 6,33)( 9,25,19,21,13,29)(10,26,20,22,14,30)(11,28,17,23,16,31)(12,27,18,24,15,32)$
6F $6^{6}$ $12$ $6$ $30$ $( 1,11,26,34,13,24)( 2,12,25,33,14,23)( 3, 9,27,35,16,22)( 4,10,28,36,15,21)( 5,20,31, 7,18,29)( 6,19,32, 8,17,30)$
6G $6^{5},3^{2}$ $12$ $6$ $29$ $( 1,20,26, 7,13,29)( 2,19,25, 8,14,30)( 3,17,27, 6,16,32)( 4,18,28, 5,15,31)( 9,21,35,10,22,36)(11,24,34)(12,23,33)$
12A1 $12^{3}$ $2$ $12$ $33$ $( 1,34, 7, 4,35, 6, 2,33, 8, 3,36, 5)( 9,17,14,12,19,16,10,18,13,11,20,15)(21,31,26,24,29,28,22,32,25,23,30,27)$
12A5 $12^{3}$ $2$ $12$ $33$ $( 1, 6,36, 4, 8,34, 2, 5,35, 3, 7,33)( 9,16,20,12,13,17,10,15,19,11,14,18)(21,28,30,24,25,31,22,27,29,23,26,32)$
12B $12^{3}$ $4$ $12$ $33$ $( 1,28,14, 3,26,15, 2,27,13, 4,25,16)( 5,29,17, 8,31,20, 6,30,18, 7,32,19)( 9,33,21,11,35,23,10,34,22,12,36,24)$
12C1 $12^{3}$ $4$ $12$ $33$ $( 1,24,20, 4,22,17, 2,23,19, 3,21,18)( 5,26,11, 7,28, 9, 6,25,12, 8,27,10)(13,34,29,15,35,32,14,33,30,16,36,31)$
12C5 $12^{3}$ $4$ $12$ $33$ $( 1,32,10, 4,30,11, 2,31, 9, 3,29,12)( 5,22,16, 7,23,13, 6,21,15, 8,24,14)(17,36,28,19,34,25,18,35,27,20,33,26)$
12D1 $12^{3}$ $6$ $12$ $33$ $( 1,34, 7, 4,35, 6, 2,33, 8, 3,36, 5)( 9,32,14,23,19,27,10,31,13,24,20,28)(11,29,15,22,17,25,12,30,16,21,18,26)$
12D5 $12^{3}$ $6$ $12$ $33$ $( 1, 6,36, 4, 8,34, 2, 5,35, 3, 7,33)( 9,27,20,23,13,32,10,28,19,24,14,31)(11,25,18,22,16,29,12,26,17,21,15,30)$

Malle's constant $a(G)$:     $1/12$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 2D 2E 2F 2G 3A 3B 3C 4A 4B 6A 6B 6C 6D 6E 6F 6G 12A1 12A5 12B 12C1 12C5 12D1 12D5
Size 1 1 3 3 6 6 18 18 2 2 4 2 6 2 2 4 6 6 12 12 2 2 4 4 4 6 6
2 P 1A 1A 1A 1A 1A 1A 1A 1A 3A 3B 3C 2A 2A 3A 3B 3C 3A 3A 3B 3B 6A 6A 6B 6C 6C 6A 6A
3 P 1A 2A 2B 2C 2D 2E 2F 2G 1A 1A 1A 4A 4B 2A 2A 2A 2B 2C 2D 2E 4A 4A 4A 4A 4A 4B 4B
Type
144.144.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
144.144.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
144.144.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
144.144.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
144.144.1e R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
144.144.1f R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
144.144.1g R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
144.144.1h R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
144.144.2a R 2 2 0 0 2 2 0 0 2 1 1 2 0 2 1 1 0 0 1 1 2 2 1 1 1 0 0
144.144.2b R 2 2 2 2 0 0 0 0 1 2 1 2 2 1 2 1 1 1 0 0 1 1 2 1 1 1 1
144.144.2c R 2 2 2 2 0 0 0 0 2 2 2 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0
144.144.2d R 2 2 2 2 0 0 0 0 2 2 2 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0
144.144.2e R 2 2 2 2 0 0 0 0 1 2 1 2 2 1 2 1 1 1 0 0 1 1 2 1 1 1 1
144.144.2f R 2 2 2 2 0 0 0 0 1 2 1 2 2 1 2 1 1 1 0 0 1 1 2 1 1 1 1
144.144.2g R 2 2 0 0 2 2 0 0 2 1 1 2 0 2 1 1 0 0 1 1 2 2 1 1 1 0 0
144.144.2h R 2 2 0 0 2 2 0 0 2 1 1 2 0 2 1 1 0 0 1 1 2 2 1 1 1 0 0
144.144.2i R 2 2 0 0 2 2 0 0 2 1 1 2 0 2 1 1 0 0 1 1 2 2 1 1 1 0 0
144.144.2j R 2 2 2 2 0 0 0 0 1 2 1 2 2 1 2 1 1 1 0 0 1 1 2 1 1 1 1
144.144.2k1 R 2 2 2 2 0 0 0 0 1 2 1 0 0 1 2 1 1 1 0 0 ζ121ζ12 ζ121+ζ12 0 ζ121ζ12 ζ121+ζ12 ζ121+ζ12 ζ121ζ12
144.144.2k2 R 2 2 2 2 0 0 0 0 1 2 1 0 0 1 2 1 1 1 0 0 ζ121+ζ12 ζ121ζ12 0 ζ121+ζ12 ζ121ζ12 ζ121ζ12 ζ121+ζ12
144.144.2l1 R 2 2 2 2 0 0 0 0 1 2 1 0 0 1 2 1 1 1 0 0 ζ121ζ12 ζ121+ζ12 0 ζ121ζ12 ζ121+ζ12 ζ121ζ12 ζ121+ζ12
144.144.2l2 R 2 2 2 2 0 0 0 0 1 2 1 0 0 1 2 1 1 1 0 0 ζ121+ζ12 ζ121ζ12 0 ζ121+ζ12 ζ121ζ12 ζ121+ζ12 ζ121ζ12
144.144.4a R 4 4 0 0 0 0 0 0 2 2 1 4 0 2 2 1 0 0 0 0 2 2 2 1 1 0 0
144.144.4b R 4 4 0 0 0 0 0 0 4 2 2 0 0 4 2 2 0 0 0 0 0 0 0 0 0 0 0
144.144.4c R 4 4 0 0 0 0 0 0 2 2 1 4 0 2 2 1 0 0 0 0 2 2 2 1 1 0 0
144.144.4d1 R 4 4 0 0 0 0 0 0 2 2 1 0 0 2 2 1 0 0 0 0 2ζ1212ζ12 2ζ121+2ζ12 0 ζ121+ζ12 ζ121ζ12 0 0
144.144.4d2 R 4 4 0 0 0 0 0 0 2 2 1 0 0 2 2 1 0 0 0 0 2ζ121+2ζ12 2ζ1212ζ12 0 ζ121ζ12 ζ121+ζ12 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed