Show commands: Magma
Group invariants
| Abstract group: | $S_3\times D_{12}$ |
| |
| Order: | $144=2^{4} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $150$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,10,26,36,13,21)(2,9,25,35,14,22)(3,11,27,34,16,24)(4,12,28,33,15,23)(5,18,31)(6,17,32)(7,19,29,8,20,30)$, $(1,34)(2,33)(3,35)(4,36)(5,7)(6,8)(9,16)(10,15)(11,13)(12,14)(17,19)(18,20)(21,28)(22,27)(23,25)(24,26)(29,31)(30,32)$, $(3,4)(5,34)(6,33)(7,36)(8,35)(9,30)(10,29)(11,31)(12,32)(13,26)(14,25)(15,27)(16,28)(17,23)(18,24)(19,22)(20,21)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 6 $16$: $D_4\times C_2$ $24$: $S_3 \times C_2^2$ x 2, $D_{12}$ x 2 $36$: $S_3^2$ $48$: 12T28, 24T29 $72$: 12T37 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 2
Degree 4: $D_{4}$
Degree 6: $D_{6}$ x 2
Degree 9: $S_3^2$
Degree 18: 18T29
Low degree siblings
24T229 x 2, 36T150 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
| 2B | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 9,22)(10,21)(11,24)(12,23)(13,26)(14,25)(15,28)(16,27)(17,32)(18,31)(19,30)(20,29)$ |
| 2C | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30)(33,34)(35,36)$ |
| 2D | $2^{18}$ | $6$ | $2$ | $18$ | $( 1,34)( 2,33)( 3,35)( 4,36)( 5, 7)( 6, 8)( 9,16)(10,15)(11,13)(12,14)(17,19)(18,20)(21,28)(22,27)(23,25)(24,26)(29,31)(30,32)$ |
| 2E | $2^{15},1^{6}$ | $6$ | $2$ | $15$ | $( 1, 7)( 2, 8)( 3, 6)( 4, 5)( 9,10)(13,20)(14,19)(15,18)(16,17)(21,22)(25,30)(26,29)(27,32)(28,31)(35,36)$ |
| 2F | $2^{17},1^{2}$ | $18$ | $2$ | $17$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,18)( 6,17)( 7,19)( 8,20)(13,36)(14,35)(15,33)(16,34)(21,26)(22,25)(23,28)(24,27)(29,30)$ |
| 2G | $2^{18}$ | $18$ | $2$ | $18$ | $( 1,32)( 2,31)( 3,30)( 4,29)( 5,25)( 6,26)( 7,28)( 8,27)( 9,11)(10,12)(13,17)(14,18)(15,20)(16,19)(21,33)(22,34)(23,36)(24,35)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 8,35)( 2, 7,36)( 3, 6,34)( 4, 5,33)( 9,13,19)(10,14,20)(11,16,17)(12,15,18)(21,25,29)(22,26,30)(23,28,31)(24,27,32)$ |
| 3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,26,13)( 2,25,14)( 3,27,16)( 4,28,15)( 5,31,18)( 6,32,17)( 7,29,20)( 8,30,19)( 9,35,22)(10,36,21)(11,34,24)(12,33,23)$ |
| 3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,22,19)( 2,21,20)( 3,24,17)( 4,23,18)( 5,28,12)( 6,27,11)( 7,25,10)( 8,26, 9)(13,35,30)(14,36,29)(15,33,31)(16,34,32)$ |
| 4A | $4^{9}$ | $2$ | $4$ | $27$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)(17,19,18,20)(21,24,22,23)(25,27,26,28)(29,32,30,31)(33,36,34,35)$ |
| 4B | $4^{9}$ | $6$ | $4$ | $27$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,23,10,24)(11,22,12,21)(13,28,14,27)(15,25,16,26)(17,30,18,29)(19,31,20,32)(33,36,34,35)$ |
| 6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 7,35, 2, 8,36)( 3, 5,34, 4, 6,33)( 9,14,19,10,13,20)(11,15,17,12,16,18)(21,26,29,22,25,30)(23,27,31,24,28,32)$ |
| 6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,14,26, 2,13,25)( 3,15,27, 4,16,28)( 5,17,31, 6,18,32)( 7,19,29, 8,20,30)( 9,21,35,10,22,36)(11,23,34,12,24,33)$ |
| 6C | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,20,22, 2,19,21)( 3,18,24, 4,17,23)( 5,11,28, 6,12,27)( 7, 9,25, 8,10,26)(13,29,35,14,30,36)(15,32,33,16,31,34)$ |
| 6D | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1,35, 8)( 2,36, 7)( 3,34, 6)( 4,33, 5)( 9,30,13,22,19,26)(10,29,14,21,20,25)(11,32,16,24,17,27)(12,31,15,23,18,28)$ |
| 6E | $6^{6}$ | $6$ | $6$ | $30$ | $( 1, 7,35, 2, 8,36)( 3, 5,34, 4, 6,33)( 9,25,19,21,13,29)(10,26,20,22,14,30)(11,28,17,23,16,31)(12,27,18,24,15,32)$ |
| 6F | $6^{6}$ | $12$ | $6$ | $30$ | $( 1,11,26,34,13,24)( 2,12,25,33,14,23)( 3, 9,27,35,16,22)( 4,10,28,36,15,21)( 5,20,31, 7,18,29)( 6,19,32, 8,17,30)$ |
| 6G | $6^{5},3^{2}$ | $12$ | $6$ | $29$ | $( 1,20,26, 7,13,29)( 2,19,25, 8,14,30)( 3,17,27, 6,16,32)( 4,18,28, 5,15,31)( 9,21,35,10,22,36)(11,24,34)(12,23,33)$ |
| 12A1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,34, 7, 4,35, 6, 2,33, 8, 3,36, 5)( 9,17,14,12,19,16,10,18,13,11,20,15)(21,31,26,24,29,28,22,32,25,23,30,27)$ |
| 12A5 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1, 6,36, 4, 8,34, 2, 5,35, 3, 7,33)( 9,16,20,12,13,17,10,15,19,11,14,18)(21,28,30,24,25,31,22,27,29,23,26,32)$ |
| 12B | $12^{3}$ | $4$ | $12$ | $33$ | $( 1,28,14, 3,26,15, 2,27,13, 4,25,16)( 5,29,17, 8,31,20, 6,30,18, 7,32,19)( 9,33,21,11,35,23,10,34,22,12,36,24)$ |
| 12C1 | $12^{3}$ | $4$ | $12$ | $33$ | $( 1,24,20, 4,22,17, 2,23,19, 3,21,18)( 5,26,11, 7,28, 9, 6,25,12, 8,27,10)(13,34,29,15,35,32,14,33,30,16,36,31)$ |
| 12C5 | $12^{3}$ | $4$ | $12$ | $33$ | $( 1,32,10, 4,30,11, 2,31, 9, 3,29,12)( 5,22,16, 7,23,13, 6,21,15, 8,24,14)(17,36,28,19,34,25,18,35,27,20,33,26)$ |
| 12D1 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1,34, 7, 4,35, 6, 2,33, 8, 3,36, 5)( 9,32,14,23,19,27,10,31,13,24,20,28)(11,29,15,22,17,25,12,30,16,21,18,26)$ |
| 12D5 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1, 6,36, 4, 8,34, 2, 5,35, 3, 7,33)( 9,27,20,23,13,32,10,28,19,24,14,31)(11,25,18,22,16,29,12,26,17,21,15,30)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A1 | 12A5 | 12B | 12C1 | 12C5 | 12D1 | 12D5 | ||
| Size | 1 | 1 | 3 | 3 | 6 | 6 | 18 | 18 | 2 | 2 | 4 | 2 | 6 | 2 | 2 | 4 | 6 | 6 | 12 | 12 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 2A | 2A | 3A | 3B | 3C | 3A | 3A | 3B | 3B | 6A | 6A | 6B | 6C | 6C | 6A | 6A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 1A | 1A | 4A | 4B | 2A | 2A | 2A | 2B | 2C | 2D | 2E | 4A | 4A | 4A | 4A | 4A | 4B | 4B | |
| Type | ||||||||||||||||||||||||||||
| 144.144.1a | R | |||||||||||||||||||||||||||
| 144.144.1b | R | |||||||||||||||||||||||||||
| 144.144.1c | R | |||||||||||||||||||||||||||
| 144.144.1d | R | |||||||||||||||||||||||||||
| 144.144.1e | R | |||||||||||||||||||||||||||
| 144.144.1f | R | |||||||||||||||||||||||||||
| 144.144.1g | R | |||||||||||||||||||||||||||
| 144.144.1h | R | |||||||||||||||||||||||||||
| 144.144.2a | R | |||||||||||||||||||||||||||
| 144.144.2b | R | |||||||||||||||||||||||||||
| 144.144.2c | R | |||||||||||||||||||||||||||
| 144.144.2d | R | |||||||||||||||||||||||||||
| 144.144.2e | R | |||||||||||||||||||||||||||
| 144.144.2f | R | |||||||||||||||||||||||||||
| 144.144.2g | R | |||||||||||||||||||||||||||
| 144.144.2h | R | |||||||||||||||||||||||||||
| 144.144.2i | R | |||||||||||||||||||||||||||
| 144.144.2j | R | |||||||||||||||||||||||||||
| 144.144.2k1 | R | |||||||||||||||||||||||||||
| 144.144.2k2 | R | |||||||||||||||||||||||||||
| 144.144.2l1 | R | |||||||||||||||||||||||||||
| 144.144.2l2 | R | |||||||||||||||||||||||||||
| 144.144.4a | R | |||||||||||||||||||||||||||
| 144.144.4b | R | |||||||||||||||||||||||||||
| 144.144.4c | R | |||||||||||||||||||||||||||
| 144.144.4d1 | R | |||||||||||||||||||||||||||
| 144.144.4d2 | R |
Regular extensions
Data not computed