Show commands: Magma
Group invariants
| Abstract group: | $(C_2^2\times C_6^2).S_3^3$ |
| |
| Order: | $31104=2^{7} \cdot 3^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $13453$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,28,4,29,5,26,2,27,3,30,6,25)(7,23,11,20,10,21)(8,24,12,19,9,22)(13,31,16,34,17,35,14,32,15,33,18,36)$, $(1,14,7,2,13,8)(3,18,11,6,15,9)(4,17,12,5,16,10)(19,25,32,20,26,31)(21,30,33,24,27,36)(22,29,34,23,28,35)$, $(1,10)(2,9)(3,11)(4,12)(5,7)(6,8)(13,18)(14,17)(15,16)(19,21)(20,22)(23,24)(25,33)(26,34)(27,31)(28,32)(29,35)(30,36)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 3 $8$: $C_2^3$ $12$: $D_{6}$ x 9 $24$: $S_3 \times C_2^2$ x 3 $36$: $S_3^2$ x 3 $72$: 12T37 x 3 $108$: $C_3^2 : D_{6} $ x 2 $216$: 12T117, 18T94 x 2 $576$: $(A_4\wr C_2):C_2$ $648$: 18T191 x 2 $1152$: 12T195 $1944$: 18T342 $3456$: 24T7230 $10368$: 36T9018 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $S_3^2$
Degree 9: None
Degree 12: 12T195
Degree 18: 18T343
Low degree siblings
36T13454, 36T13455, 36T13456Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
90 x 90 character table
Regular extensions
Data not computed