Show commands: Magma
Group invariants
| Abstract group: | $C_6:S_4$ |
| |
| Order: | $144=2^{4} \cdot 3^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $134$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,28,13,3,25,16)(2,27,14,4,26,15)(5,31,17,8,30,19)(6,32,18,7,29,20)(9,36,23,12,33,22)(10,35,24,11,34,21)$, $(1,33,8,3,36,5)(2,34,7,4,35,6)(9,20,16,12,18,13)(10,19,15,11,17,14)(21,30,25,24,31,28)(22,29,26,23,32,27)$, $(1,9)(2,10)(3,12)(4,11)(5,20)(6,19)(7,17)(8,18)(13,33)(14,34)(15,35)(16,36)(21,27)(22,28)(23,25)(24,26)(29,31)(30,32)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 4 $12$: $D_{6}$ x 4 $18$: $C_3^2:C_2$ $24$: $S_4$ $36$: 18T12 $48$: $S_4\times C_2$ $72$: 12T44 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 4
Degree 4: None
Degree 6: $D_{6}$ x 4, $S_4$, $S_4\times C_2$
Degree 9: $C_3^2:C_2$
Degree 12: $C_2 \times S_4$
Low degree siblings
18T66 x 2, 24T251 x 6, 36T109, 36T133 x 2, 36T134, 36T166Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)$ |
| 2B | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(21,22)(23,24)(29,30)(31,32)$ |
| 2C | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,28)(26,27)(29,31)(30,32)(33,36)(34,35)$ |
| 2D | $2^{18}$ | $18$ | $2$ | $18$ | $( 1,16)( 2,15)( 3,13)( 4,14)( 5,12)( 6,11)( 7,10)( 8, 9)(17,35)(18,36)(19,34)(20,33)(21,29)(22,30)(23,31)(24,32)(25,27)(26,28)$ |
| 2E | $2^{18}$ | $18$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5,33)( 6,34)( 7,35)( 8,36)( 9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,23)(18,24)(19,22)(20,21)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,32,11)( 2,31,12)( 3,29,10)( 4,30, 9)( 5,23,15)( 6,24,16)( 7,21,13)( 8,22,14)(17,33,27)(18,34,28)(19,36,26)(20,35,25)$ |
| 3B | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,13,25)( 2,14,26)( 3,16,28)( 4,15,27)( 5,17,30)( 6,18,29)( 7,20,32)( 8,19,31)( 9,23,33)(10,24,34)(11,21,35)(12,22,36)$ |
| 3C | $3^{12}$ | $8$ | $3$ | $24$ | $( 1, 7,35)( 2, 8,36)( 3, 6,34)( 4, 5,33)( 9,15,17)(10,16,18)(11,13,20)(12,14,19)(21,25,32)(22,26,31)(23,27,30)(24,28,29)$ |
| 3D | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,21,20)( 2,22,19)( 3,24,18)( 4,23,17)( 5,27, 9)( 6,28,10)( 7,25,11)( 8,26,12)(13,35,32)(14,36,31)(15,33,30)(16,34,29)$ |
| 4A | $4^{6},2^{4},1^{4}$ | $18$ | $4$ | $22$ | $( 1,36, 2,35)( 3,33, 4,34)( 9,28,10,27)(11,26,12,25)(13,21)(14,22)(15,23)(16,24)(17,30,18,29)(19,31,20,32)$ |
| 4B | $4^{6},2^{6}$ | $18$ | $4$ | $24$ | $( 1,17, 2,18)( 3,19, 4,20)( 5,14)( 6,13)( 7,16)( 8,15)( 9,35,10,36)(11,33,12,34)(21,24)(22,23)(25,29,26,30)(27,31,28,32)$ |
| 6A | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,10,32, 3,11,29)( 2, 9,31, 4,12,30)( 5,14,23, 8,15,22)( 6,13,24, 7,16,21)(17,26,33,19,27,36)(18,25,34,20,28,35)$ |
| 6B | $6^{4},3^{4}$ | $6$ | $6$ | $28$ | $( 1,12,32, 2,11,31)( 3, 9,29, 4,10,30)( 5,16,23, 6,15,24)( 7,14,21, 8,13,22)(17,27,33)(18,28,34)(19,26,36)(20,25,35)$ |
| 6C | $6^{6}$ | $6$ | $6$ | $30$ | $( 1, 9,32, 4,11,30)( 2,10,31, 3,12,29)( 5,13,23, 7,15,21)( 6,14,24, 8,16,22)(17,26,33,19,27,36)(18,25,34,20,28,35)$ |
| 6D | $6^{6}$ | $8$ | $6$ | $30$ | $( 1,28,13, 3,25,16)( 2,27,14, 4,26,15)( 5,31,17, 8,30,19)( 6,32,18, 7,29,20)( 9,36,23,12,33,22)(10,35,24,11,34,21)$ |
| 6E | $6^{6}$ | $8$ | $6$ | $30$ | $( 1,34, 7, 3,35, 6)( 2,33, 8, 4,36, 5)( 9,19,15,12,17,14)(10,20,16,11,18,13)(21,29,25,24,32,28)(22,30,26,23,31,27)$ |
| 6F | $6^{6}$ | $8$ | $6$ | $30$ | $( 1,18,21, 3,20,24)( 2,17,22, 4,19,23)( 5,12,27, 8, 9,26)( 6,11,28, 7,10,25)(13,29,35,16,32,34)(14,30,36,15,31,33)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | ||
| Size | 1 | 1 | 3 | 3 | 18 | 18 | 2 | 8 | 8 | 8 | 18 | 18 | 2 | 6 | 6 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 2B | 2B | 3A | 3A | 3A | 3B | 3C | 3D | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 1A | 1A | 1A | 1A | 4A | 4B | 2A | 2B | 2C | 2A | 2A | 2A | |
| Type | |||||||||||||||||||
| 144.189.1a | R | ||||||||||||||||||
| 144.189.1b | R | ||||||||||||||||||
| 144.189.1c | R | ||||||||||||||||||
| 144.189.1d | R | ||||||||||||||||||
| 144.189.2a | R | ||||||||||||||||||
| 144.189.2b | R | ||||||||||||||||||
| 144.189.2c | R | ||||||||||||||||||
| 144.189.2d | R | ||||||||||||||||||
| 144.189.2e | R | ||||||||||||||||||
| 144.189.2f | R | ||||||||||||||||||
| 144.189.2g | R | ||||||||||||||||||
| 144.189.2h | R | ||||||||||||||||||
| 144.189.3a | R | ||||||||||||||||||
| 144.189.3b | R | ||||||||||||||||||
| 144.189.3c | R | ||||||||||||||||||
| 144.189.3d | R | ||||||||||||||||||
| 144.189.6a | R | ||||||||||||||||||
| 144.189.6b | R |
Regular extensions
Data not computed