Show commands: Magma
Group invariants
| Abstract group: | $C_6:D_6^2:S_4$ |
| |
| Order: | $20736=2^{8} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $12166$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,9,6)(2,10,5)(3,11,8)(4,12,7)(13,27,19,33)(14,28,20,34)(15,25,17,35)(16,26,18,36)(21,30,22,29)(23,32,24,31)$, $(1,33,12,31)(2,34,11,32)(3,35,10,29)(4,36,9,30)(5,27,8,26)(6,28,7,25)(13,17,21,15,20,23,14,18,22,16,19,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ x 3 $48$: $S_4\times C_2$ x 3 $96$: $V_4^2:S_3$ $192$: $V_4^2:(S_3\times C_2)$ x 2, 12T100 $648$: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ $768$: 16T1068 $1296$: 18T301 $2592$: 18T402 $5184$: 18T485 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Degree 9: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Degree 12: 12T111
Degree 18: 18T404
Low degree siblings
36T12000 x 4, 36T12001 x 4, 36T12166 x 3, 36T12169 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
88 x 88 character table
Regular extensions
Data not computed