Show commands: Magma
Group invariants
| Abstract group: | $C_2^2\times S_3^3:S_4$ |
| |
| Order: | $20736=2^{8} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $12049$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,11,34,17,7,13,2,12,33,18,8,14)(3,9,36,20,6,15,4,10,35,19,5,16)(21,30)(22,29)(23,32)(24,31)(25,26)(27,28)$, $(1,32,18,5,26,16,33,24,11,4,29,20,7,27,13,36,21,10)(2,31,17,6,25,15,34,23,12,3,30,19,8,28,14,35,22,9)$, $(1,23,4,22)(2,24,3,21)(5,30,33,28)(6,29,34,27)(7,31,36,25)(8,32,35,26)(9,18,15,11,19,13)(10,17,16,12,20,14)$, $(1,28,7,23,33,31)(2,27,8,24,34,32)(3,26,6,21,35,29)(4,25,5,22,36,30)(9,11)(10,12)(13,15)(14,16)(17,20)(18,19)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $6$: $S_3$ $8$: $C_2^3$ x 15 $12$: $D_{6}$ x 7 $16$: $C_2^4$ $24$: $S_4$ x 3, $S_3 \times C_2^2$ x 7 $48$: $S_4\times C_2$ x 21, 24T30 $96$: $V_4^2:S_3$, 12T48 x 21 $192$: 12T100 x 7, 24T400 x 3 $384$: 12T139 x 7 $768$: 24T2499 $1296$: $S_3\wr S_3$ $2592$: 18T394 x 3 $5184$: 18T483, 36T6138 $10368$: 18T556 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4\times C_2$ x 3
Degree 9: $S_3\wr S_3$
Degree 12: 12T139
Low degree siblings
36T12049 x 95, 36T12081 x 96Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed