Show commands: Magma
Group invariants
| Abstract group: | $C_6:D_6^2:S_4$ |
| |
| Order: | $20736=2^{8} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $12001$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,22,5,31,34,26)(2,21,6,32,33,25)(3,23,8,29,35,27,4,24,7,30,36,28)(9,20)(10,19)(11,17)(12,18)(15,16)$, $(1,17,32,7,9,27,34,14,21,3,19,30,5,11,25,35,16,23)(2,18,31,8,10,28,33,13,22,4,20,29,6,12,26,36,15,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ x 3 $48$: $S_4\times C_2$ x 3 $96$: $V_4^2:S_3$ $192$: $V_4^2:(S_3\times C_2)$ x 2, 12T100 $648$: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ $768$: 16T1068 $1296$: 18T301 $2592$: 18T402 $5184$: 18T485 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Degree 9: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Degree 12: 12T108
Degree 18: 18T313
Low degree siblings
36T12000 x 4, 36T12001 x 3, 36T12166 x 4, 36T12169 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
88 x 88 character table
Regular extensions
Data not computed