Show commands: Magma
Group invariants
| Abstract group: | $C_3^{12}.C_2^8.C_3^4.C_2^2:D_4.D_4$ |
| |
| Order: | $2821109907456=2^{16} \cdot 3^{16}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $119996$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,27,15,2,26,14,3,25,13)(4,30,16)(5,28,17)(6,29,18)(7,33)(8,32,9,31)(10,23)(11,22)(12,24)(34,36)$, $(1,35)(2,36)(3,34)(4,7,29,20,5,9,28,19)(6,8,30,21)(10,13,24,26,12,15,22,27,11,14,23,25)(16,33)(17,32,18,31)$, $(1,17,32,22)(2,16,33,24)(3,18,31,23)(4,8,35,26,30,21,12,14)(5,7,34,25,29,20,11,13,6,9,36,27,28,19,10,15)$, $(1,31,25,19,15,9,3,32,26,20,13,8,2,33,27,21,14,7)(4,34,17,10,28,22)(5,35,18,11,29,23)(6,36,16,12,30,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $D_{4}$ x 20, $C_2^3$ x 15 $16$: $D_4\times C_2$ x 30, $C_2^4$ $32$: $C_2^2 \wr C_2$ x 8, $Q_8:C_2^2$ x 2, $C_2^2 \times D_4$ x 5 $64$: $(C_4^2 : C_2):C_2$ x 4, 16T87, 16T105 x 2, 16T109 x 4 $128$: 16T265 x 2, 32T1237 $256$: 16T511 $5184$: 12T266 $10368$: 24T10113 $20736$: 24T12559 $1327104$: 16T1934 $2654208$: 24T22681 $5308416$: 24T23348 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: None
Degree 9: None
Degree 12: 12T266
Degree 18: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed