Show commands: Magma
Group invariants
| Abstract group: | $(S_3\times D_6^2).S_4$ |
| |
| Order: | $20736=2^{8} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $11999$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,12,8,19)(2,11,7,20)(3,10,5,17)(4,9,6,18)(13,34,14,33)(15,36,16,35)(21,32,28,24,29,25)(22,31,27,23,30,26)$, $(1,34,7,2,33,8)(3,36,6)(4,35,5)(9,29,16,27,17,21,10,30,15,28,18,22)(11,31,14,26,19,23)(12,32,13,25,20,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ x 3 $48$: $S_4\times C_2$ x 3 $96$: $V_4^2:S_3$ $192$: $V_4^2:(S_3\times C_2)$ x 2, 12T100 $768$: 16T1068 $1296$: $S_3\wr S_3$ $5184$: 18T483 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Degree 9: $S_3\wr S_3$
Degree 12: 12T109
Degree 18: 18T312
Low degree siblings
36T11984 x 2, 36T11985 x 2, 36T11998 x 2, 36T11999, 36T12205 x 2, 36T12206 x 2, 36T12207 x 2, 36T12215 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
82 x 82 character table
Regular extensions
Data not computed