Show commands: Magma
Group invariants
| Abstract group: | $C_3^3:D_{12}$ |
| |
| Order: | $648=2^{3} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $1195$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,11,8,17,13,22,21,30,25,36,31,5)(2,12,9,18,15,23,19,28,26,34,33,6)(3,10,7,16,14,24,20,29,27,35,32,4)$, $(1,20,2,19,3,21)(4,6)(7,15,9,14,8,13)(10,35)(11,34)(12,36)(16,28)(17,30)(18,29)(22,23)(25,32,26,33,27,31)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $8$: $D_{4}$ $12$: $D_{6}$ x 2 $24$: $D_{12}$, $(C_6\times C_2):C_2$ $36$: $S_3^2$ $72$: $C_3^2:D_4$, 12T38 $216$: 12T116, 12T118 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $S_3^2$
Degree 9: None
Degree 12: 12T38, 12T118, 12T120, 12T169
Degree 18: None
Low degree siblings
12T169 x 2, 18T210 x 2, 24T1521 x 2, 24T1533, 36T1105 x 2, 36T1106 x 2, 36T1107 x 2, 36T1153, 36T1154, 36T1160, 36T1167, 36T1173, 36T1190 x 2, 36T1195, 36T1225 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,20)( 2,21)( 3,19)( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)(13,32)(14,33)(15,31)(16,36)(17,34)(18,35)$ |
| 2B | $2^{18}$ | $18$ | $2$ | $18$ | $( 1,23)( 2,22)( 3,24)( 4,21)( 5,20)( 6,19)( 7,17)( 8,16)( 9,18)(10,14)(11,15)(12,13)(25,34)(26,36)(27,35)(28,33)(29,31)(30,32)$ |
| 2C | $2^{17},1^{2}$ | $54$ | $2$ | $17$ | $( 1,27)( 2,26)( 3,25)( 4,24)( 5,23)( 6,22)( 7,21)( 8,20)( 9,19)(10,16)(11,18)(12,17)(13,14)(28,36)(29,35)(30,34)(31,32)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,27,15)( 2,25,14)( 3,26,13)( 4,17,28)( 5,18,29)( 6,16,30)( 7,33,21)( 8,32,19)( 9,31,20)(10,22,34)(11,23,35)(12,24,36)$ |
| 3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,13,25)( 2,15,26)( 3,14,27)( 4,16,29)( 5,17,30)( 6,18,28)( 7,20,32)( 8,21,31)( 9,19,33)(10,24,35)(11,22,36)(12,23,34)$ |
| 3C | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 4, 6, 5)(10,11,12)(16,18,17)(22,23,24)(28,30,29)(34,35,36)$ |
| 3D | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 3, 2)( 4, 5, 6)( 7, 8, 9)(10,12,11)(13,14,15)(16,17,18)(19,20,21)(22,24,23)(25,27,26)(28,29,30)(31,33,32)(34,36,35)$ |
| 3E | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,26,14)( 2,27,13)( 3,25,15)( 4, 6, 5)( 7,31,19)( 8,33,20)( 9,32,21)(10,12,11)(16,18,17)(22,24,23)(28,30,29)(34,36,35)$ |
| 3F1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,14,26)( 2,13,27)( 3,15,25)( 4,30,18)( 5,28,16)( 6,29,17)( 7,20,32)( 8,21,31)( 9,19,33)(10,35,24)(11,36,22)(12,34,23)$ |
| 3F-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,26,14)( 2,27,13)( 3,25,15)( 4,18,30)( 5,16,28)( 6,17,29)( 7,32,20)( 8,31,21)( 9,33,19)(10,24,35)(11,22,36)(12,23,34)$ |
| 3G | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,27,15)( 2,25,14)( 3,26,13)( 4, 6, 5)( 7,32,20)( 8,31,21)( 9,33,19)(10,12,11)(16,18,17)(22,24,23)(28,30,29)(34,36,35)$ |
| 3H | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,26,14)( 2,27,13)( 3,25,15)( 4,28,17)( 5,29,18)( 6,30,16)( 7,33,21)( 8,32,19)( 9,31,20)(10,36,23)(11,34,24)(12,35,22)$ |
| 3I | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,15,27)( 2,14,25)( 3,13,26)( 4,30,18)( 5,28,16)( 6,29,17)( 7,21,33)( 8,19,32)( 9,20,31)(10,35,24)(11,36,22)(12,34,23)$ |
| 3J | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,25,13)( 2,26,15)( 3,27,14)( 4,28,17)( 5,29,18)( 6,30,16)( 7,32,20)( 8,31,21)( 9,33,19)(10,36,23)(11,34,24)(12,35,22)$ |
| 3K | $3^{9},1^{9}$ | $8$ | $3$ | $18$ | $( 1, 3, 2)( 4,18,30)( 5,16,28)( 6,17,29)(10,23,36)(11,24,34)(12,22,35)(13,14,15)(25,27,26)$ |
| 3L1 | $3^{9},1^{9}$ | $8$ | $3$ | $18$ | $( 4,29,16)( 5,30,17)( 6,28,18)( 7, 8, 9)(10,34,22)(11,35,23)(12,36,24)(19,20,21)(31,33,32)$ |
| 3L-1 | $3^{9},1^{9}$ | $8$ | $3$ | $18$ | $( 1, 2, 3)( 4,29,16)( 5,30,17)( 6,28,18)(10,34,22)(11,35,23)(12,36,24)(13,15,14)(25,26,27)$ |
| 4A | $4^{9}$ | $54$ | $4$ | $27$ | $( 1,29,19,12)( 2,30,20,10)( 3,28,21,11)( 4,33,23,13)( 5,32,24,15)( 6,31,22,14)( 7,35,26,17)( 8,36,27,18)( 9,34,25,16)$ |
| 6A | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,31,27,20,15, 9)( 2,33,25,21,14, 7)( 3,32,26,19,13, 8)( 4,10,17,22,28,34)( 5,11,18,23,29,35)( 6,12,16,24,30,36)$ |
| 6B | $6^{6}$ | $18$ | $6$ | $30$ | $( 1, 9,13,19,25,33)( 2, 7,15,20,26,32)( 3, 8,14,21,27,31)( 4,12,16,23,29,34)( 5,10,17,24,30,35)( 6,11,18,22,28,36)$ |
| 6C1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,11,27,23,15,35)( 2,10,25,22,14,34)( 3,12,26,24,13,36)( 4,33,17,21,28, 7)( 5,31,18,20,29, 9)( 6,32,16,19,30, 8)$ |
| 6C-1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,24,15,12,27,36)( 2,23,14,11,25,35)( 3,22,13,10,26,34)( 4,32,28, 8,17,19)( 5,33,29, 7,18,21)( 6,31,30, 9,16,20)$ |
| 6D | $6^{6}$ | $36$ | $6$ | $30$ | $( 1, 5, 3, 6, 2, 4)( 7,34, 8,36, 9,35)(10,32,12,31,11,33)(13,30,14,28,15,29)(16,25,17,27,18,26)(19,24,20,23,21,22)$ |
| 6E | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,32,26,21,14, 9)( 2,31,27,19,13, 7)( 3,33,25,20,15, 8)( 4,23, 6,22, 5,24)(10,29,12,28,11,30)(16,34,18,36,17,35)$ |
| 6F1 | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,18,14, 4,26,30)( 2,17,13, 6,27,29)( 3,16,15, 5,25,28)( 7,10,20,35,32,24)( 8,12,21,34,31,23)( 9,11,19,36,33,22)$ |
| 6F-1 | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,30,26, 4,14,18)( 2,29,27, 6,13,17)( 3,28,25, 5,15,16)( 7,24,32,35,20,10)( 8,23,31,34,21,12)( 9,22,33,36,19,11)$ |
| 6G | $6^{3},2^{8},1^{2}$ | $108$ | $6$ | $23$ | $( 1,27)( 2,26)( 3,25)( 4,23, 6,24, 5,22)( 7,21)( 8,20)( 9,19)(10,17,11,16,12,18)(13,14)(28,35,30,36,29,34)(31,32)$ |
| 12A1 | $12^{3}$ | $54$ | $12$ | $33$ | $( 1,23, 9,29,13,34,19, 4,25,12,33,16)( 2,24, 7,30,15,35,20, 5,26,10,32,17)( 3,22, 8,28,14,36,21, 6,27,11,31,18)$ |
| 12A5 | $12^{3}$ | $54$ | $12$ | $33$ | $( 1,34,33,29,25,23,19,16,13,12, 9, 4)( 2,35,32,30,26,24,20,17,15,10, 7, 5)( 3,36,31,28,27,22,21,18,14,11, 8, 6)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F1 | 3F-1 | 3G | 3H | 3I | 3J | 3K | 3L1 | 3L-1 | 4A | 6A | 6B | 6C1 | 6C-1 | 6D | 6E | 6F1 | 6F-1 | 6G | 12A1 | 12A5 | ||
| Size | 1 | 9 | 18 | 54 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 54 | 18 | 18 | 18 | 18 | 36 | 36 | 36 | 36 | 108 | 54 | 54 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F-1 | 3F1 | 3G | 3H | 3I | 3J | 3K | 3L-1 | 3L1 | 2A | 3A | 3B | 3A | 3A | 3D | 3E | 3F1 | 3F-1 | 3C | 6B | 6B | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 2B | 2A | 2B | 2B | 2C | 4A | 4A | |
| Type | |||||||||||||||||||||||||||||||
| 648.723.1a | R | ||||||||||||||||||||||||||||||
| 648.723.1b | R | ||||||||||||||||||||||||||||||
| 648.723.1c | R | ||||||||||||||||||||||||||||||
| 648.723.1d | R | ||||||||||||||||||||||||||||||
| 648.723.2a | R | ||||||||||||||||||||||||||||||
| 648.723.2b | R | ||||||||||||||||||||||||||||||
| 648.723.2c | R | ||||||||||||||||||||||||||||||
| 648.723.2d | R | ||||||||||||||||||||||||||||||
| 648.723.2e | R | ||||||||||||||||||||||||||||||
| 648.723.2f1 | R | ||||||||||||||||||||||||||||||
| 648.723.2f2 | R | ||||||||||||||||||||||||||||||
| 648.723.2g1 | C | ||||||||||||||||||||||||||||||
| 648.723.2g2 | C | ||||||||||||||||||||||||||||||
| 648.723.4a | R | ||||||||||||||||||||||||||||||
| 648.723.4b | R | ||||||||||||||||||||||||||||||
| 648.723.4c | R | ||||||||||||||||||||||||||||||
| 648.723.4d | R | ||||||||||||||||||||||||||||||
| 648.723.4e | R | ||||||||||||||||||||||||||||||
| 648.723.4f | R | ||||||||||||||||||||||||||||||
| 648.723.4g1 | C | ||||||||||||||||||||||||||||||
| 648.723.4g2 | C | ||||||||||||||||||||||||||||||
| 648.723.4h1 | C | ||||||||||||||||||||||||||||||
| 648.723.4h2 | C | ||||||||||||||||||||||||||||||
| 648.723.8a | R | ||||||||||||||||||||||||||||||
| 648.723.8b | R | ||||||||||||||||||||||||||||||
| 648.723.8c | R | ||||||||||||||||||||||||||||||
| 648.723.8d | R | ||||||||||||||||||||||||||||||
| 648.723.8e | R | ||||||||||||||||||||||||||||||
| 648.723.8f1 | C | ||||||||||||||||||||||||||||||
| 648.723.8f2 | C |
Regular extensions
Data not computed