Show commands: Magma
Group invariants
| Abstract group: | $C_3^3:D_{12}$ |
| |
| Order: | $648=2^{3} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $1173$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,32,3,33,2,31)(4,24,6,22,5,23)(7,13,9,15,8,14)(10,29,11,30,12,28)(16,34,17,36,18,35)(19,25,21,26,20,27)$, $(1,35,15,11,26,23,3,34,13,10,27,24)(2,36,14,12,25,22)(4,7,30,32,16,21,6,9,29,31,17,20)(5,8,28,33,18,19)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $8$: $D_{4}$ $12$: $D_{6}$ x 2 $24$: $D_{12}$, $(C_6\times C_2):C_2$ $36$: $S_3^2$ $72$: $C_3^2:D_4$, 12T38 $216$: 12T116, 12T118 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $S_3^2$, $C_3^2:D_4$
Degree 9: None
Degree 18: None
Low degree siblings
12T169 x 2, 18T210 x 2, 24T1521 x 2, 24T1533, 36T1105 x 2, 36T1106 x 2, 36T1107 x 2, 36T1153, 36T1154, 36T1160, 36T1167, 36T1190 x 2, 36T1195 x 2, 36T1225 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{12},1^{12}$ | $9$ | $2$ | $12$ | $( 1, 3)( 4, 6)( 7, 8)(10,12)(13,15)(16,17)(19,21)(22,23)(26,27)(29,30)(31,33)(35,36)$ |
| 2B | $2^{18}$ | $18$ | $2$ | $18$ | $( 1, 6)( 2, 5)( 3, 4)( 7,23)( 8,22)( 9,24)(10,31)(11,32)(12,33)(13,17)(14,18)(15,16)(19,36)(20,34)(21,35)(25,28)(26,30)(27,29)$ |
| 2C | $2^{18}$ | $54$ | $2$ | $18$ | $( 1,32)( 2,33)( 3,31)( 4,24)( 5,22)( 6,23)( 7,15)( 8,14)( 9,13)(10,30)(11,29)(12,28)(16,34)(17,35)(18,36)(19,25)(20,26)(21,27)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,13,26)( 2,14,25)( 3,15,27)( 4,16,29)( 5,18,28)( 6,17,30)( 7,31,21)( 8,33,19)( 9,32,20)(10,35,23)(11,34,24)(12,36,22)$ |
| 3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,26,13)( 2,25,14)( 3,27,15)( 4,16,29)( 5,18,28)( 6,17,30)( 7,21,31)( 8,19,33)( 9,20,32)(10,35,23)(11,34,24)(12,36,22)$ |
| 3C | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 2, 3)( 4, 5, 6)( 7, 9, 8)(10,11,12)(13,14,15)(16,18,17)(19,21,20)(22,23,24)(25,27,26)(28,30,29)(31,32,33)(34,36,35)$ |
| 3D | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 1, 2, 3)( 4, 5, 6)(13,14,15)(16,18,17)(25,27,26)(28,30,29)$ |
| 3E | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 1,13,26)( 2,14,25)( 3,15,27)( 7,31,21)( 8,33,19)( 9,32,20)$ |
| 3F1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,27,14)( 2,26,15)( 3,25,13)( 4,30,18)( 5,29,17)( 6,28,16)( 7,21,31)( 8,19,33)( 9,20,32)(10,23,35)(11,24,34)(12,22,36)$ |
| 3F-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,14,27)( 2,15,26)( 3,13,25)( 4,18,30)( 5,17,29)( 6,16,28)( 7,31,21)( 8,33,19)( 9,32,20)(10,35,23)(11,34,24)(12,36,22)$ |
| 3G | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,14,27)( 2,15,26)( 3,13,25)( 4, 5, 6)( 7,33,20)( 8,32,21)( 9,31,19)(10,12,11)(16,18,17)(22,24,23)(28,30,29)(34,35,36)$ |
| 3H | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,15,25)( 2,13,27)( 3,14,26)( 4,30,18)( 5,29,17)( 6,28,16)( 7,31,21)( 8,33,19)( 9,32,20)(10,23,35)(11,24,34)(12,22,36)$ |
| 3I | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,25,15)( 2,27,13)( 3,26,14)( 4,28,17)( 5,30,16)( 6,29,18)( 7,20,33)( 8,21,32)( 9,19,31)(10,24,36)(11,22,35)(12,23,34)$ |
| 3J | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,14,27)( 2,15,26)( 3,13,25)( 4,28,17)( 5,30,16)( 6,29,18)( 7,32,19)( 8,31,20)( 9,33,21)(10,24,36)(11,22,35)(12,23,34)$ |
| 3K | $3^{12}$ | $8$ | $3$ | $24$ | $( 1, 2, 3)( 4,18,30)( 5,17,29)( 6,16,28)( 7, 8, 9)(10,36,24)(11,35,22)(12,34,23)(13,14,15)(19,20,21)(25,27,26)(31,33,32)$ |
| 3L1 | $3^{9},1^{9}$ | $8$ | $3$ | $18$ | $( 1, 3, 2)( 4,30,18)( 5,29,17)( 6,28,16)(10,23,35)(11,24,34)(12,22,36)(13,15,14)(25,26,27)$ |
| 3L-1 | $3^{9},1^{9}$ | $8$ | $3$ | $18$ | $( 4,29,16)( 5,28,18)( 6,30,17)( 7, 8, 9)(10,22,34)(11,23,36)(12,24,35)(19,20,21)(31,33,32)$ |
| 4A | $4^{6},2^{6}$ | $54$ | $4$ | $24$ | $( 1,35, 2,36)( 3,34)( 4,21, 5,19)( 6,20)( 7,28, 8,29)( 9,30)(10,14,12,13)(11,15)(16,31,18,33)(17,32)(22,26,23,25)(24,27)$ |
| 6A | $6^{4},3^{4}$ | $18$ | $6$ | $28$ | $( 1,27,13, 3,26,15)( 2,25,14)( 4,30,16, 6,29,17)( 5,28,18)( 7,19,31, 8,21,33)( 9,20,32)(10,22,35,12,23,36)(11,24,34)$ |
| 6B | $6^{4},3^{4}$ | $18$ | $6$ | $28$ | $( 1,14,26, 2,13,25)( 3,15,27)( 4,28,16, 5,29,18)( 6,30,17)( 7,33,21, 8,31,19)( 9,32,20)(10,22,35,12,23,36)(11,24,34)$ |
| 6C1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,30,13, 6,26,17)( 2,28,14, 5,25,18)( 3,29,15, 4,27,16)( 7,35,31,23,21,10)( 8,36,33,22,19,12)( 9,34,32,24,20,11)$ |
| 6C-1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1, 6,26,30,13,17)( 2, 5,25,28,14,18)( 3, 4,27,29,15,16)( 7,23,21,35,31,10)( 8,22,19,36,33,12)( 9,24,20,34,32,11)$ |
| 6D | $6^{3},2^{9}$ | $36$ | $6$ | $24$ | $( 1, 6, 2, 4, 3, 5)( 7,23)( 8,24)( 9,22)(10,31)(11,33)(12,32)(13,17,14,16,15,18)(19,34)(20,36)(21,35)(25,29,27,28,26,30)$ |
| 6E | $6^{2},3^{2},2^{6},1^{6}$ | $36$ | $6$ | $20$ | $( 1,25,13, 2,26,14)( 3,27,15)( 4, 5)( 7,21,31)( 8,20,33, 9,19,32)(11,12)(16,18)(22,24)(28,29)(34,36)$ |
| 6F1 | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,18,27, 4,14,30)( 2,17,26, 5,15,29)( 3,16,25, 6,13,28)( 7,11,21,24,31,34)( 8,12,19,22,33,36)( 9,10,20,23,32,35)$ |
| 6F-1 | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,30,14, 4,27,18)( 2,29,15, 5,26,17)( 3,28,13, 6,25,16)( 7,34,31,24,21,11)( 8,36,33,22,19,12)( 9,35,32,23,20,10)$ |
| 6G | $6^{6}$ | $108$ | $6$ | $30$ | $( 1,31, 2,32, 3,33)( 4,23, 5,24, 6,22)( 7,14, 9,15, 8,13)(10,28,11,30,12,29)(16,35,18,34,17,36)(19,26,21,25,20,27)$ |
| 12A1 | $12^{2},6^{2}$ | $54$ | $12$ | $32$ | $( 1,22,14,35,26,12, 2,23,13,36,25,10)( 3,24,15,34,27,11)( 4,33,28,21,16, 8, 5,31,29,19,18, 7)( 6,32,30,20,17, 9)$ |
| 12A5 | $12^{2},6^{2}$ | $54$ | $12$ | $32$ | $( 1,12,25,35,13,22, 2,10,26,36,14,23)( 3,11,27,34,15,24)( 4, 8,18,21,29,33, 5, 7,16,19,28,31)( 6, 9,17,20,30,32)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F1 | 3F-1 | 3G | 3H | 3I | 3J | 3K | 3L1 | 3L-1 | 4A | 6A | 6B | 6C1 | 6C-1 | 6D | 6E | 6F1 | 6F-1 | 6G | 12A1 | 12A5 | ||
| Size | 1 | 9 | 18 | 54 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 54 | 18 | 18 | 18 | 18 | 36 | 36 | 36 | 36 | 108 | 54 | 54 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F-1 | 3F1 | 3G | 3H | 3I | 3J | 3K | 3L-1 | 3L1 | 2A | 3A | 3B | 3A | 3A | 3D | 3E | 3F1 | 3F-1 | 3C | 6B | 6B | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 2B | 2A | 2B | 2B | 2C | 4A | 4A | |
| Type | |||||||||||||||||||||||||||||||
| 648.723.1a | R | ||||||||||||||||||||||||||||||
| 648.723.1b | R | ||||||||||||||||||||||||||||||
| 648.723.1c | R | ||||||||||||||||||||||||||||||
| 648.723.1d | R | ||||||||||||||||||||||||||||||
| 648.723.2a | R | ||||||||||||||||||||||||||||||
| 648.723.2b | R | ||||||||||||||||||||||||||||||
| 648.723.2c | R | ||||||||||||||||||||||||||||||
| 648.723.2d | R | ||||||||||||||||||||||||||||||
| 648.723.2e | R | ||||||||||||||||||||||||||||||
| 648.723.2f1 | R | ||||||||||||||||||||||||||||||
| 648.723.2f2 | R | ||||||||||||||||||||||||||||||
| 648.723.2g1 | C | ||||||||||||||||||||||||||||||
| 648.723.2g2 | C | ||||||||||||||||||||||||||||||
| 648.723.4a | R | ||||||||||||||||||||||||||||||
| 648.723.4b | R | ||||||||||||||||||||||||||||||
| 648.723.4c | R | ||||||||||||||||||||||||||||||
| 648.723.4d | R | ||||||||||||||||||||||||||||||
| 648.723.4e | R | ||||||||||||||||||||||||||||||
| 648.723.4f | R | ||||||||||||||||||||||||||||||
| 648.723.4g1 | C | ||||||||||||||||||||||||||||||
| 648.723.4g2 | C | ||||||||||||||||||||||||||||||
| 648.723.4h1 | C | ||||||||||||||||||||||||||||||
| 648.723.4h2 | C | ||||||||||||||||||||||||||||||
| 648.723.8a | R | ||||||||||||||||||||||||||||||
| 648.723.8b | R | ||||||||||||||||||||||||||||||
| 648.723.8c | R | ||||||||||||||||||||||||||||||
| 648.723.8d | R | ||||||||||||||||||||||||||||||
| 648.723.8e | R | ||||||||||||||||||||||||||||||
| 648.723.8f1 | C | ||||||||||||||||||||||||||||||
| 648.723.8f2 | C |
Regular extensions
Data not computed