Show commands: Magma
Group invariants
| Abstract group: | $C_3^{12}.C_2^6.C_4^2.A_4.(C_2\times D_4)$ |
| |
| Order: | $104485552128=2^{16} \cdot 3^{13}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $116542$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,26,3,25)(2,27)(4,22)(5,24)(6,23)(7,20)(8,21)(9,19)(10,18,28,35,12,17,29,36)(11,16,30,34)(13,31,14,32,15,33)$, $(1,17,3,18,2,16)(4,6,5)(7,11,9,12,8,10)(13,33,15,32,14,31)(19,34)(20,35)(21,36)(22,24,23)(25,28)(26,29)(27,30)$, $(1,17,15,28,7,22)(2,16,13,29,9,23,3,18,14,30,8,24)(4,21,35,33,10,26,6,20,34,32,11,27)(5,19,36,31,12,25)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 3 $16$: $D_4\times C_2$ $24$: $S_4$ x 3, $S_3 \times C_2^2$, $(C_6\times C_2):C_2$ x 2 $48$: $S_4\times C_2$ x 9, 24T25 $96$: $V_4^2:S_3$, 12T48 x 3, 12T49 x 6 $192$: 12T100 x 3, 12T112 x 2, 24T398 x 3 $384$: 12T135 x 2, 12T138 x 2, 12T139, 12T147 x 4, 16T751 x 4 $768$: 16T1063 x 2, 24T1631, 24T1932, 24T2496 x 2, 32T34928 x 2 $1536$: 12T223 x 4, 24T3096, 24T3102 x 2, 24T3330 x 2, 32T97128 $3072$: 24T5377 x 2, 24T6770, 24T7168 x 2 $6144$: 32T397318 $24576$: 24T13910 $196608$: 24T18675 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4\times C_2$
Degree 9: None
Degree 12: 12T223
Degree 18: None
Low degree siblings
36T116232, 36T116338, 36T116542Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed