Show commands: Magma
Group invariants
Abstract group: | $C_3^3:D_{12}$ |
| |
Order: | $648=2^{3} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $1160$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,17,13,28,25,4)(2,16,15,30,26,6)(3,18,14,29,27,5)(7,22,21,36,33,11)(8,23,20,35,31,12)(9,24,19,34,32,10)$, $(1,28,20,12,2,29,21,10,3,30,19,11)(4,7,24,26,5,9,22,27,6,8,23,25)(13,17,32,36,15,18,31,35,14,16,33,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $8$: $D_{4}$ $12$: $D_{6}$ x 2 $24$: $D_{12}$, $(C_6\times C_2):C_2$ $36$: $S_3^2$ $72$: $C_3^2:D_4$, 12T38 $216$: 12T116, 12T118 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Degree 9: None
Degree 12: $(C_6\times C_2):C_2$, 12T118, 12T169 x 2
Degree 18: None
Low degree siblings
12T169 x 2, 18T210 x 2, 24T1521 x 2, 24T1533, 36T1105 x 2, 36T1106 x 2, 36T1107 x 2, 36T1153, 36T1154, 36T1167, 36T1173, 36T1190 x 2, 36T1195 x 2, 36T1225 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,21)( 2,19)( 3,20)( 4,24)( 5,22)( 6,23)( 7,27)( 8,26)( 9,25)(10,29)(11,30)(12,28)(13,31)(14,32)(15,33)(16,34)(17,36)(18,35)$ |
2B | $2^{18}$ | $18$ | $2$ | $18$ | $( 1,28)( 2,30)( 3,29)( 4,13)( 5,14)( 6,15)( 7,35)( 8,34)( 9,36)(10,20)(11,19)(12,21)(16,26)(17,25)(18,27)(22,32)(23,33)(24,31)$ |
2C | $2^{17},1^{2}$ | $54$ | $2$ | $17$ | $( 1,19)( 2,21)( 3,20)( 4,18)( 5,17)( 6,16)( 7,14)( 8,13)( 9,15)(11,12)(22,35)(23,36)(24,34)(25,33)(26,31)(27,32)(28,29)$ |
3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,14,26)( 2,13,27)( 3,15,25)( 4,18,30)( 5,16,28)( 6,17,29)( 7,19,31)( 8,21,32)( 9,20,33)(10,23,36)(11,24,35)(12,22,34)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 3, 2)( 4, 6, 5)( 7, 8, 9)(10,12,11)(13,14,15)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)(31,32,33)(34,35,36)$ |
3C | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 1, 3, 2)( 7, 9, 8)(13,14,15)(19,20,21)(25,27,26)(31,33,32)$ |
3D | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,12,11)(13,15,14)(16,17,18)(19,21,20)(22,24,23)(25,26,27)(28,29,30)(31,32,33)(34,35,36)$ |
3E | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,25,13)( 2,26,15)( 3,27,14)( 4,29,16)( 5,30,17)( 6,28,18)( 7,32,20)( 8,33,19)( 9,31,21)(10,34,24)(11,36,22)(12,35,23)$ |
3F1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,25,13)( 2,26,15)( 3,27,14)( 4,29,16)( 5,30,17)( 6,28,18)( 7,33,21)( 8,31,20)( 9,32,19)(10,35,22)(11,34,23)(12,36,24)$ |
3F-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,13,25)( 2,15,26)( 3,14,27)( 4,16,29)( 5,17,30)( 6,18,28)( 7,21,33)( 8,20,31)( 9,19,32)(10,22,35)(11,23,34)(12,24,36)$ |
3G | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,25,13)( 2,26,15)( 3,27,14)( 4,28,17)( 5,29,18)( 6,30,16)( 7,32,20)( 8,33,19)( 9,31,21)(10,36,23)(11,35,24)(12,34,22)$ |
3H | $3^{6},1^{18}$ | $8$ | $3$ | $12$ | $( 7, 8, 9)(10,12,11)(19,21,20)(22,24,23)(31,32,33)(34,35,36)$ |
3I | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,25,13)( 2,26,15)( 3,27,14)( 4,30,18)( 5,28,16)( 6,29,17)( 7,33,21)( 8,31,20)( 9,32,19)(10,36,23)(11,35,24)(12,34,22)$ |
3J | $3^{9},1^{9}$ | $8$ | $3$ | $18$ | $( 4, 5, 6)( 7, 8, 9)(10,11,12)(16,17,18)(19,21,20)(22,23,24)(28,29,30)(31,32,33)(34,36,35)$ |
3K | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,27,15)( 2,25,14)( 3,26,13)( 4,30,18)( 5,28,16)( 6,29,17)( 7,33,21)( 8,31,20)( 9,32,19)(10,34,24)(11,36,22)(12,35,23)$ |
3L1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,13,25)( 2,15,26)( 3,14,27)( 4,16,29)( 5,17,30)( 6,18,28)( 7,19,31)( 8,21,32)( 9,20,33)(10,23,36)(11,24,35)(12,22,34)$ |
3L-1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,13,25)( 2,15,26)( 3,14,27)( 4,18,30)( 5,16,28)( 6,17,29)( 7,19,31)( 8,21,32)( 9,20,33)(10,24,34)(11,22,36)(12,23,35)$ |
4A | $4^{9}$ | $54$ | $4$ | $27$ | $( 1,29,19,11)( 2,30,20,12)( 3,28,21,10)( 4, 9,22,27)( 5, 8,23,25)( 6, 7,24,26)(13,18,33,34)(14,17,31,35)(15,16,32,36)$ |
6A | $6^{6}$ | $18$ | $6$ | $30$ | $( 1, 8,14,21,26,32)( 2, 7,13,19,27,31)( 3, 9,15,20,25,33)( 4,11,18,24,30,35)( 5,12,16,22,28,34)( 6,10,17,23,29,36)$ |
6B | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,20, 3,19, 2,21)( 4,23, 6,22, 5,24)( 7,27, 8,26, 9,25)(10,29,12,28,11,30)(13,32,14,33,15,31)(16,35,18,36,17,34)$ |
6C1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,16,14,28,26, 5)( 2,18,13,30,27, 4)( 3,17,15,29,25, 6)( 7,24,19,35,31,11)( 8,22,21,34,32,12)( 9,23,20,36,33,10)$ |
6C-1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1, 6,26,29,14,17)( 2, 5,27,28,13,16)( 3, 4,25,30,15,18)( 7,12,31,34,19,22)( 8,10,32,36,21,23)( 9,11,33,35,20,24)$ |
6D | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,11, 2,10, 3,12)( 4,31, 5,32, 6,33)( 7,16, 8,17, 9,18)(13,23,15,22,14,24)(19,28,21,29,20,30)(25,34,26,35,27,36)$ |
6E | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,31,25,21,13, 9)( 2,33,26,19,15, 8)( 3,32,27,20,14, 7)( 4,35,29,23,16,12)( 5,34,30,24,17,10)( 6,36,28,22,18,11)$ |
6F1 | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,23,25,11,13,34)( 2,22,26,10,15,35)( 3,24,27,12,14,36)( 4, 7,29,33,16,21)( 5, 8,30,31,17,20)( 6, 9,28,32,18,19)$ |
6F-1 | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,34,13,11,25,23)( 2,35,15,10,26,22)( 3,36,14,12,27,24)( 4,21,16,33,29, 7)( 5,20,17,31,30, 8)( 6,19,18,32,28, 9)$ |
6G | $6^{3},2^{8},1^{2}$ | $108$ | $6$ | $23$ | $( 1,21, 3,19, 2,20)( 4,18)( 5,17)( 6,16)( 7,13, 9,14, 8,15)(11,12)(22,35)(23,36)(24,34)(25,31,27,33,26,32)(28,29)$ |
12A1 | $12^{3}$ | $54$ | $12$ | $33$ | $( 1,10,20,29, 3,12,19,28, 2,11,21,30)( 4,26,23, 9, 6,25,22, 7, 5,27,24, 8)(13,35,32,18,14,36,33,17,15,34,31,16)$ |
12A5 | $12^{3}$ | $54$ | $12$ | $33$ | $( 1,12,21,29, 2,10,19,30, 3,11,20,28)( 4,25,24, 9, 5,26,22, 8, 6,27,23, 7)(13,36,31,18,15,35,33,16,14,34,32,17)$ |
Malle's constant $a(G)$: $1/12$
Character table
1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F1 | 3F-1 | 3G | 3H | 3I | 3J | 3K | 3L1 | 3L-1 | 4A | 6A | 6B | 6C1 | 6C-1 | 6D | 6E | 6F1 | 6F-1 | 6G | 12A1 | 12A5 | ||
Size | 1 | 9 | 18 | 54 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 54 | 18 | 18 | 18 | 18 | 36 | 36 | 36 | 36 | 108 | 54 | 54 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F-1 | 3F1 | 3G | 3H | 3I | 3J | 3K | 3L-1 | 3L1 | 2A | 3A | 3B | 3A | 3A | 3D | 3E | 3F1 | 3F-1 | 3C | 6B | 6B | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 2B | 2A | 2B | 2B | 2C | 4A | 4A | |
Type | |||||||||||||||||||||||||||||||
648.723.1a | R | ||||||||||||||||||||||||||||||
648.723.1b | R | ||||||||||||||||||||||||||||||
648.723.1c | R | ||||||||||||||||||||||||||||||
648.723.1d | R | ||||||||||||||||||||||||||||||
648.723.2a | R | ||||||||||||||||||||||||||||||
648.723.2b | R | ||||||||||||||||||||||||||||||
648.723.2c | R | ||||||||||||||||||||||||||||||
648.723.2d | R | ||||||||||||||||||||||||||||||
648.723.2e | R | ||||||||||||||||||||||||||||||
648.723.2f1 | R | ||||||||||||||||||||||||||||||
648.723.2f2 | R | ||||||||||||||||||||||||||||||
648.723.2g1 | C | ||||||||||||||||||||||||||||||
648.723.2g2 | C | ||||||||||||||||||||||||||||||
648.723.4a | R | ||||||||||||||||||||||||||||||
648.723.4b | R | ||||||||||||||||||||||||||||||
648.723.4c | R | ||||||||||||||||||||||||||||||
648.723.4d | R | ||||||||||||||||||||||||||||||
648.723.4e | R | ||||||||||||||||||||||||||||||
648.723.4f | R | ||||||||||||||||||||||||||||||
648.723.4g1 | C | ||||||||||||||||||||||||||||||
648.723.4g2 | C | ||||||||||||||||||||||||||||||
648.723.4h1 | C | ||||||||||||||||||||||||||||||
648.723.4h2 | C | ||||||||||||||||||||||||||||||
648.723.8a | R | ||||||||||||||||||||||||||||||
648.723.8b | R | ||||||||||||||||||||||||||||||
648.723.8c | R | ||||||||||||||||||||||||||||||
648.723.8d | R | ||||||||||||||||||||||||||||||
648.723.8e | R | ||||||||||||||||||||||||||||||
648.723.8f1 | C | ||||||||||||||||||||||||||||||
648.723.8f2 | C |
Regular extensions
Data not computed