Show commands: Magma
Group invariants
| Abstract group: | $C_3^3:D_{12}$ |
| |
| Order: | $648=2^{3} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $1154$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,22,7,29,14,36,20,6,27,12,31,18)(2,23,9,28,15,34,19,5,25,11,32,16)(3,24,8,30,13,35,21,4,26,10,33,17)$, $(1,22,2,24,3,23)(4,21)(5,20)(6,19)(7,16)(8,17)(9,18)(10,13,11,14,12,15)(25,35,26,34,27,36)(28,31)(29,32)(30,33)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $8$: $D_{4}$ $12$: $D_{6}$ x 2 $24$: $D_{12}$, $(C_6\times C_2):C_2$ $36$: $S_3^2$ $72$: $C_3^2:D_4$, $C_3:D_{12}$ $216$: 12T116, $C_3^2:D_{12}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Degree 9: None
Degree 12: $D_{12}$, 12T120, $C_3^3:D_{12}$ x 2
Degree 18: None
Low degree siblings
12T169 x 2, 18T210 x 2, 24T1521 x 2, 24T1533, 36T1105 x 2, 36T1106 x 2, 36T1107 x 2, 36T1153, 36T1160, 36T1167, 36T1173, 36T1190 x 2, 36T1195 x 2, 36T1225 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,21)( 2,20)( 3,19)( 4,22)( 5,24)( 6,23)( 7,25)( 8,27)( 9,26)(10,28)(11,29)(12,30)(13,32)(14,33)(15,31)(16,35)(17,36)(18,34)$ |
| 2B | $2^{18}$ | $18$ | $2$ | $18$ | $( 1, 6)( 2, 4)( 3, 5)( 7,36)( 8,34)( 9,35)(10,32)(11,33)(12,31)(13,28)(14,29)(15,30)(16,26)(17,25)(18,27)(19,24)(20,22)(21,23)$ |
| 2C | $2^{17},1^{2}$ | $54$ | $2$ | $17$ | $( 1,19)( 2,20)( 3,21)( 4,18)( 5,16)( 6,17)( 7,15)( 8,13)( 9,14)(10,12)(22,35)(23,34)(24,36)(25,31)(26,33)(27,32)(29,30)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 2, 3)( 4, 5, 6)( 7, 9, 8)(10,11,12)(13,14,15)(16,18,17)(19,21,20)(22,24,23)(25,26,27)(28,29,30)(31,32,33)(34,36,35)$ |
| 3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,27,14)( 2,25,15)( 3,26,13)( 4,30,17)( 5,28,16)( 6,29,18)( 7,31,20)( 8,33,21)( 9,32,19)(10,35,24)(11,34,23)(12,36,22)$ |
| 3C | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 1, 3, 2)( 7, 9, 8)(13,15,14)(19,21,20)(25,27,26)(31,32,33)$ |
| 3D | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 2, 3)( 4, 6, 5)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,24,23)(25,26,27)(28,30,29)(31,33,32)(34,36,35)$ |
| 3E | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,26,15)( 2,27,13)( 3,25,14)( 4,29,16)( 5,30,18)( 6,28,17)( 7,33,19)( 8,32,20)( 9,31,21)(10,36,23)(11,35,22)(12,34,24)$ |
| 3F1 | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 1, 2, 3)(10,11,12)(13,14,15)(22,24,23)(25,26,27)(34,36,35)$ |
| 3F-1 | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 1, 3, 2)(10,12,11)(13,15,14)(22,23,24)(25,27,26)(34,35,36)$ |
| 3G | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,26,15)( 2,27,13)( 3,25,14)( 4,30,17)( 5,28,16)( 6,29,18)( 7,33,19)( 8,32,20)( 9,31,21)(10,34,22)(11,36,24)(12,35,23)$ |
| 3H | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,13,25)( 2,14,26)( 3,15,27)( 4,16,29)( 5,18,30)( 6,17,28)( 7,19,33)( 8,20,32)( 9,21,31)(10,22,34)(11,24,36)(12,23,35)$ |
| 3I | $3^{9},1^{9}$ | $8$ | $3$ | $18$ | $( 1, 2, 3)( 4, 6, 5)(10,12,11)(13,14,15)(16,17,18)(22,23,24)(25,26,27)(28,30,29)(34,35,36)$ |
| 3J | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,13,25)( 2,14,26)( 3,15,27)( 4,17,30)( 5,16,28)( 6,18,29)( 7,19,33)( 8,20,32)( 9,21,31)(10,24,35)(11,23,34)(12,22,36)$ |
| 3K | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,13,25)( 2,14,26)( 3,15,27)( 4,17,30)( 5,16,28)( 6,18,29)( 7,21,32)( 8,19,31)( 9,20,33)(10,23,36)(11,22,35)(12,24,34)$ |
| 3L1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,27,14)( 2,25,15)( 3,26,13)( 4,29,16)( 5,30,18)( 6,28,17)( 7,33,19)( 8,32,20)( 9,31,21)(10,35,24)(11,34,23)(12,36,22)$ |
| 3L-1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,27,14)( 2,25,15)( 3,26,13)( 4,30,17)( 5,28,16)( 6,29,18)( 7,33,19)( 8,32,20)( 9,31,21)(10,36,23)(11,35,22)(12,34,24)$ |
| 4A | $4^{9}$ | $54$ | $4$ | $27$ | $( 1,28,20,12)( 2,30,19,11)( 3,29,21,10)( 4,32,23,15)( 5,31,22,14)( 6,33,24,13)( 7,36,27,16)( 8,35,26,18)( 9,34,25,17)$ |
| 6A | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,19, 2,21, 3,20)( 4,23, 5,22, 6,24)( 7,27, 9,25, 8,26)(10,30,11,28,12,29)(13,31,14,32,15,33)(16,36,18,35,17,34)$ |
| 6B | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,31,27,20,14, 7)( 2,32,25,19,15, 9)( 3,33,26,21,13, 8)( 4,34,30,23,17,11)( 5,36,28,22,16,12)( 6,35,29,24,18,10)$ |
| 6C1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1, 5, 2, 6, 3, 4)( 7,34, 9,36, 8,35)(10,31,11,32,12,33)(13,30,14,28,15,29)(16,25,18,26,17,27)(19,22,21,24,20,23)$ |
| 6C-1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,17, 3,18, 2,16)( 4,13, 6,15, 5,14)( 7,10, 8,12, 9,11)(19,34,20,35,21,36)(22,32,23,31,24,33)(25,28,27,30,26,29)$ |
| 6D | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,22, 2,24, 3,23)( 4,20, 6,21, 5,19)( 7,18, 8,16, 9,17)(10,13,11,14,12,15)(25,35,26,34,27,36)(28,32,30,31,29,33)$ |
| 6E | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,31,26,21,15, 9)( 2,32,27,20,13, 8)( 3,33,25,19,14, 7)( 4,34,29,24,16,12)( 5,36,30,23,18,10)( 6,35,28,22,17,11)$ |
| 6F1 | $6^{3},2^{9}$ | $36$ | $6$ | $24$ | $( 1,23, 2,22, 3,24)( 4,19)( 5,21)( 6,20)( 7,18)( 8,16)( 9,17)(10,14,11,15,12,13)(25,36,26,35,27,34)(28,33)(29,31)(30,32)$ |
| 6F-1 | $6^{3},2^{9}$ | $36$ | $6$ | $24$ | $( 1,24, 3,22, 2,23)( 4,19)( 5,21)( 6,20)( 7,18)( 8,16)( 9,17)(10,13,12,15,11,14)(25,34,27,35,26,36)(28,33)(29,31)(30,32)$ |
| 6G | $6^{3},2^{8},1^{2}$ | $108$ | $6$ | $23$ | $( 1,20, 3,19, 2,21)( 4,18)( 5,16)( 6,17)( 7,13, 9,15, 8,14)(10,12)(22,35)(23,34)(24,36)(25,33,27,31,26,32)(29,30)$ |
| 12A1 | $12^{3}$ | $54$ | $12$ | $33$ | $( 1,36,31,28,27,22,20,16,14,12, 7, 5)( 2,34,32,30,25,23,19,17,15,11, 9, 4)( 3,35,33,29,26,24,21,18,13,10, 8, 6)$ |
| 12A5 | $12^{3}$ | $54$ | $12$ | $33$ | $( 1,22, 7,28,14,36,20, 5,27,12,31,16)( 2,23, 9,30,15,34,19, 4,25,11,32,17)( 3,24, 8,29,13,35,21, 6,26,10,33,18)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F1 | 3F-1 | 3G | 3H | 3I | 3J | 3K | 3L1 | 3L-1 | 4A | 6A | 6B | 6C1 | 6C-1 | 6D | 6E | 6F1 | 6F-1 | 6G | 12A1 | 12A5 | ||
| Size | 1 | 9 | 18 | 54 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 54 | 18 | 18 | 18 | 18 | 36 | 36 | 36 | 36 | 108 | 54 | 54 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F-1 | 3F1 | 3G | 3H | 3I | 3J | 3K | 3L-1 | 3L1 | 2A | 3A | 3B | 3A | 3A | 3D | 3E | 3F1 | 3F-1 | 3C | 6B | 6B | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 2B | 2A | 2B | 2B | 2C | 4A | 4A | |
| Type | |||||||||||||||||||||||||||||||
| 648.723.1a | R | ||||||||||||||||||||||||||||||
| 648.723.1b | R | ||||||||||||||||||||||||||||||
| 648.723.1c | R | ||||||||||||||||||||||||||||||
| 648.723.1d | R | ||||||||||||||||||||||||||||||
| 648.723.2a | R | ||||||||||||||||||||||||||||||
| 648.723.2b | R | ||||||||||||||||||||||||||||||
| 648.723.2c | R | ||||||||||||||||||||||||||||||
| 648.723.2d | R | ||||||||||||||||||||||||||||||
| 648.723.2e | R | ||||||||||||||||||||||||||||||
| 648.723.2f1 | R | ||||||||||||||||||||||||||||||
| 648.723.2f2 | R | ||||||||||||||||||||||||||||||
| 648.723.2g1 | C | ||||||||||||||||||||||||||||||
| 648.723.2g2 | C | ||||||||||||||||||||||||||||||
| 648.723.4a | R | ||||||||||||||||||||||||||||||
| 648.723.4b | R | ||||||||||||||||||||||||||||||
| 648.723.4c | R | ||||||||||||||||||||||||||||||
| 648.723.4d | R | ||||||||||||||||||||||||||||||
| 648.723.4e | R | ||||||||||||||||||||||||||||||
| 648.723.4f | R | ||||||||||||||||||||||||||||||
| 648.723.4g1 | C | ||||||||||||||||||||||||||||||
| 648.723.4g2 | C | ||||||||||||||||||||||||||||||
| 648.723.4h1 | C | ||||||||||||||||||||||||||||||
| 648.723.4h2 | C | ||||||||||||||||||||||||||||||
| 648.723.8a | R | ||||||||||||||||||||||||||||||
| 648.723.8b | R | ||||||||||||||||||||||||||||||
| 648.723.8c | R | ||||||||||||||||||||||||||||||
| 648.723.8d | R | ||||||||||||||||||||||||||||||
| 648.723.8e | R | ||||||||||||||||||||||||||||||
| 648.723.8f1 | C | ||||||||||||||||||||||||||||||
| 648.723.8f2 | C |
Regular extensions
Data not computed