Show commands: Magma
Group invariants
Abstract group: | $C_{12}:D_6$ |
| |
Order: | $144=2^{4} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $112$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $6$ |
| |
Generators: | $(1,14,26,3,16,27,2,13,25,4,15,28)(5,18,32,8,20,30,6,17,31,7,19,29)(9,22,33,12,23,35,10,21,34,11,24,36)$, $(1,9,26,33,16,23,2,10,25,34,15,24)(3,12,27,35,13,21,4,11,28,36,14,22)(5,17,32,7,20,29,6,18,31,8,19,30)$, $(1,8)(2,7)(3,5)(4,6)(9,10)(13,20)(14,19)(15,18)(16,17)(23,24)(25,29)(26,30)(27,32)(28,31)(33,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $3$: $C_3$ $4$: $C_2^2$ x 7 $6$: $S_3$, $C_6$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 3, $C_6\times C_2$ x 7 $16$: $D_4\times C_2$ $18$: $S_3\times C_3$ $24$: $S_3 \times C_2^2$, $D_4 \times C_3$ x 2, 24T3 $36$: $C_6\times S_3$ x 3 $48$: 12T28, 24T38 $72$: 24T68 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 9: $S_3\times C_3$
Degree 12: $D_4 \times C_3$, 12T28
Degree 18: $S_3 \times C_6$
Low degree siblings
24T208 x 2, 36T112 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18}$ | $1$ | $2$ | $18$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)$ |
2B | $2^{18}$ | $2$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)(17,20)(18,19)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)$ |
2C | $2^{9},1^{18}$ | $2$ | $2$ | $9$ | $( 3, 4)( 5, 6)( 9,10)(13,14)(19,20)(23,24)(27,28)(31,32)(33,34)$ |
2D | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 5,33)( 6,34)( 7,36)( 8,35)( 9,19)(10,20)(11,17)(12,18)(21,30)(22,29)(23,32)(24,31)$ |
2E | $2^{18}$ | $3$ | $2$ | $18$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,10)(11,12)(13,20)(14,19)(15,17)(16,18)(21,22)(23,24)(25,30)(26,29)(27,32)(28,31)(33,34)(35,36)$ |
2F | $2^{18}$ | $6$ | $2$ | $18$ | $( 1, 4)( 2, 3)( 5,35)( 6,36)( 7,34)( 8,33)( 9,18)(10,17)(11,20)(12,19)(13,15)(14,16)(21,32)(22,31)(23,30)(24,29)(25,27)(26,28)$ |
2G | $2^{15},1^{6}$ | $6$ | $2$ | $15$ | $( 1,36)( 2,35)( 3,34)( 4,33)( 7, 8)( 9,13)(10,14)(11,15)(12,16)(17,18)(21,25)(22,26)(23,28)(24,27)(29,30)$ |
3A1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1,16,25)( 2,15,26)( 3,13,28)( 4,14,27)( 5,20,31)( 6,19,32)( 7,18,30)( 8,17,29)( 9,23,34)(10,24,33)(11,22,35)(12,21,36)$ |
3A-1 | $3^{12}$ | $1$ | $3$ | $24$ | $( 1,25,16)( 2,26,15)( 3,28,13)( 4,27,14)( 5,31,20)( 6,32,19)( 7,30,18)( 8,29,17)( 9,34,23)(10,33,24)(11,35,22)(12,36,21)$ |
3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 8,35)( 2, 7,36)( 3, 6,34)( 4, 5,33)( 9,13,19)(10,14,20)(11,16,17)(12,15,18)(21,26,30)(22,25,29)(23,28,32)(24,27,31)$ |
3C1 | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,17,22)( 2,18,21)( 3,19,23)( 4,20,24)( 5,10,27)( 6, 9,28)( 7,12,26)( 8,11,25)(13,32,34)(14,31,33)(15,30,36)(16,29,35)$ |
3C-1 | $3^{12}$ | $2$ | $3$ | $24$ | $( 1,22,17)( 2,21,18)( 3,23,19)( 4,24,20)( 5,27,10)( 6,28, 9)( 7,26,12)( 8,25,11)(13,34,32)(14,33,31)(15,36,30)(16,35,29)$ |
4A | $4^{9}$ | $2$ | $4$ | $27$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)(17,20,18,19)(21,23,22,24)(25,27,26,28)(29,31,30,32)(33,36,34,35)$ |
4B | $4^{9}$ | $6$ | $4$ | $27$ | $( 1,34, 2,33)( 3,36, 4,35)( 5, 8, 6, 7)( 9,15,10,16)(11,13,12,14)(17,19,18,20)(21,27,22,28)(23,26,24,25)(29,32,30,31)$ |
6A1 | $6^{6}$ | $1$ | $6$ | $30$ | $( 1,26,16, 2,25,15)( 3,27,13, 4,28,14)( 5,32,20, 6,31,19)( 7,29,18, 8,30,17)( 9,33,23,10,34,24)(11,36,22,12,35,21)$ |
6A-1 | $6^{6}$ | $1$ | $6$ | $30$ | $( 1,15,25, 2,16,26)( 3,14,28, 4,13,27)( 5,19,31, 6,20,32)( 7,17,30, 8,18,29)( 9,24,34,10,23,33)(11,21,35,12,22,36)$ |
6B | $6^{6}$ | $2$ | $6$ | $30$ | $( 1, 7,35, 2, 8,36)( 3, 5,34, 4, 6,33)( 9,14,19,10,13,20)(11,15,17,12,16,18)(21,25,30,22,26,29)(23,27,32,24,28,31)$ |
6C1 | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,27,16, 4,25,14)( 2,28,15, 3,26,13)( 5,29,20, 8,31,17)( 6,30,19, 7,32,18)( 9,36,23,12,34,21)(10,35,24,11,33,22)$ |
6C-1 | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,14,25, 4,16,27)( 2,13,26, 3,15,28)( 5,17,31, 8,20,29)( 6,18,32, 7,19,30)( 9,21,34,12,23,36)(10,22,33,11,24,35)$ |
6D1 | $6^{3},3^{6}$ | $2$ | $6$ | $27$ | $( 1,25,16)( 2,26,15)( 3,27,13, 4,28,14)( 5,32,20, 6,31,19)( 7,30,18)( 8,29,17)( 9,33,23,10,34,24)(11,35,22)(12,36,21)$ |
6D-1 | $6^{3},3^{6}$ | $2$ | $6$ | $27$ | $( 1,16,25)( 2,15,26)( 3,14,28, 4,13,27)( 5,19,31, 6,20,32)( 7,18,30)( 8,17,29)( 9,24,34,10,23,33)(11,22,35)(12,21,36)$ |
6E1 | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,30,11, 2,29,12)( 3,31, 9, 4,32,10)( 5,23,14, 6,24,13)( 7,22,15, 8,21,16)(17,36,25,18,35,26)(19,33,28,20,34,27)$ |
6E-1 | $6^{6}$ | $2$ | $6$ | $30$ | $( 1,12,29, 2,11,30)( 3,10,32, 4, 9,31)( 5,13,24, 6,14,23)( 7,16,21, 8,15,22)(17,26,35,18,25,36)(19,27,34,20,28,33)$ |
6F1 | $6^{4},3^{4}$ | $3$ | $6$ | $28$ | $( 1,16,25)( 2,15,26)( 3,13,28)( 4,14,27)( 5,10,31,33,20,24)( 6, 9,32,34,19,23)( 7,12,30,36,18,21)( 8,11,29,35,17,22)$ |
6F-1 | $6^{4},3^{4}$ | $3$ | $6$ | $28$ | $( 1,25,16)( 2,26,15)( 3,28,13)( 4,27,14)( 5,24,20,33,31,10)( 6,23,19,34,32, 9)( 7,21,18,36,30,12)( 8,22,17,35,29,11)$ |
6G1 | $6^{6}$ | $3$ | $6$ | $30$ | $( 1,18,25, 7,16,30)( 2,17,26, 8,15,29)( 3,20,28, 5,13,31)( 4,19,27, 6,14,32)( 9,24,34,10,23,33)(11,21,35,12,22,36)$ |
6G-1 | $6^{6}$ | $3$ | $6$ | $30$ | $( 1,30,16, 7,25,18)( 2,29,15, 8,26,17)( 3,31,13, 5,28,20)( 4,32,14, 6,27,19)( 9,33,23,10,34,24)(11,36,22,12,35,21)$ |
6H | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,33, 8, 4,35, 5)( 2,34, 7, 3,36, 6)( 9,18,13,12,19,15)(10,17,14,11,20,16)(21,32,26,23,30,28)(22,31,25,24,29,27)$ |
6I | $6^{3},3^{6}$ | $4$ | $6$ | $27$ | $( 1,36, 8, 2,35, 7)( 3,34, 6)( 4,33, 5)( 9,19,13)(10,20,14)(11,18,16,12,17,15)(21,29,26,22,30,25)(23,32,28)(24,31,27)$ |
6J1 | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,24,17, 4,22,20)( 2,23,18, 3,21,19)( 5,25,10, 8,27,11)( 6,26, 9, 7,28,12)(13,36,32,15,34,30)(14,35,31,16,33,29)$ |
6J-1 | $6^{6}$ | $4$ | $6$ | $30$ | $( 1,10,29, 4,11,31)( 2, 9,30, 3,12,32)( 5,16,24, 8,14,22)( 6,15,23, 7,13,21)(17,27,35,20,25,33)(18,28,36,19,26,34)$ |
6K1 | $6^{3},3^{6}$ | $4$ | $6$ | $27$ | $( 1,21,17, 2,22,18)( 3,23,19)( 4,24,20)( 5,27,10)( 6,28, 9)( 7,25,12, 8,26,11)(13,34,32)(14,33,31)(15,35,30,16,36,29)$ |
6K-1 | $6^{3},3^{6}$ | $4$ | $6$ | $27$ | $( 1,12,29, 2,11,30)( 3, 9,32)( 4,10,31)( 5,14,24)( 6,13,23)( 7,16,21, 8,15,22)(17,26,35,18,25,36)(19,28,34)(20,27,33)$ |
6L1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,27,16, 4,25,14)( 2,28,15, 3,26,13)( 5,22,20,35,31,11)( 6,21,19,36,32,12)( 7,23,18,34,30, 9)( 8,24,17,33,29,10)$ |
6L-1 | $6^{6}$ | $6$ | $6$ | $30$ | $( 1,14,25, 4,16,27)( 2,13,26, 3,15,28)( 5,11,31,35,20,22)( 6,12,32,36,19,21)( 7, 9,30,34,18,23)( 8,10,29,33,17,24)$ |
6M1 | $6^{5},3^{2}$ | $6$ | $6$ | $29$ | $( 1,21,16,36,25,12)( 2,22,15,35,26,11)( 3,23,13,34,28, 9)( 4,24,14,33,27,10)( 5,31,20)( 6,32,19)( 7,29,18, 8,30,17)$ |
6M-1 | $6^{5},3^{2}$ | $6$ | $6$ | $29$ | $( 1,12,25,36,16,21)( 2,11,26,35,15,22)( 3, 9,28,34,13,23)( 4,10,27,33,14,24)( 5,20,31)( 6,19,32)( 7,17,30, 8,18,29)$ |
12A1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,13,26, 4,16,28, 2,14,25, 3,15,27)( 5,17,32, 7,20,29, 6,18,31, 8,19,30)( 9,21,33,11,23,36,10,22,34,12,24,35)$ |
12A-1 | $12^{3}$ | $2$ | $12$ | $33$ | $( 1,28,15, 4,25,13, 2,27,16, 3,26,14)( 5,29,19, 7,31,17, 6,30,20, 8,32,18)( 9,36,24,11,34,21,10,35,23,12,33,22)$ |
12B | $12^{3}$ | $4$ | $12$ | $33$ | $( 1,33, 7, 3,35, 5, 2,34, 8, 4,36, 6)( 9,17,14,12,19,16,10,18,13,11,20,15)(21,32,25,24,30,28,22,31,26,23,29,27)$ |
12C1 | $12^{3}$ | $4$ | $12$ | $33$ | $( 1,10,30, 3,11,31, 2, 9,29, 4,12,32)( 5,15,23, 8,14,21, 6,16,24, 7,13,22)(17,27,36,19,25,33,18,28,35,20,26,34)$ |
12C-1 | $12^{3}$ | $4$ | $12$ | $33$ | $( 1,24,18, 3,22,20, 2,23,17, 4,21,19)( 5,26, 9, 8,27,12, 6,25,10, 7,28,11)(13,35,31,15,34,29,14,36,32,16,33,30)$ |
12D1 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1,10,26,34,16,24, 2, 9,25,33,15,23)( 3,11,27,36,13,22, 4,12,28,35,14,21)( 5,18,32, 8,20,30, 6,17,31, 7,19,29)$ |
12D-1 | $12^{3}$ | $6$ | $12$ | $33$ | $( 1,24,15,34,25,10, 2,23,16,33,26, 9)( 3,22,14,36,28,11, 4,21,13,35,27,12)( 5,30,19, 8,31,18, 6,29,20, 7,32,17)$ |
Malle's constant $a(G)$: $1/9$
Character table
45 x 45 character table
Regular extensions
Data not computed