Show commands: Magma
Group invariants
| Abstract group: | $C_3^3:D_{12}$ |
| |
| Order: | $648=2^{3} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $1105$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,33,4,32,6,36,2,34,3,31,5,35)(7,27,15,20,11,30,13,22,9,25,18,24)(8,28,16,19,12,29,14,21,10,26,17,23)$, $(1,8,14,2,7,13)(3,12,16,5,9,18)(4,11,15,6,10,17)(19,23)(20,24)(25,36)(26,35)(27,33)(28,34)(29,32)(30,31)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 2 $8$: $D_{4}$ $12$: $D_{6}$ x 2 $24$: $D_{12}$, $(C_6\times C_2):C_2$ $36$: $S_3^2$ $72$: $C_3^2:D_4$, 12T38 $216$: 12T116, 12T118 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: $S_3^2$, $C_3^2:D_4$
Degree 9: None
Degree 12: 12T36, 12T38, 12T169
Degree 18: 18T210
Low degree siblings
12T169 x 2, 18T210 x 2, 24T1521 x 2, 24T1533, 36T1105, 36T1106 x 2, 36T1107 x 2, 36T1153, 36T1154, 36T1160, 36T1167, 36T1173, 36T1190 x 2, 36T1195 x 2, 36T1225 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{18}$ | $9$ | $2$ | $18$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7, 8)( 9,10)(11,12)(19,20)(21,22)(23,24)(25,32)(26,31)(27,34)(28,33)(29,36)(30,35)$ |
| 2B | $2^{18}$ | $18$ | $2$ | $18$ | $( 1,33)( 2,34)( 3,36)( 4,35)( 5,32)( 6,31)( 7,21)( 8,22)( 9,23)(10,24)(11,19)(12,20)(13,28)(14,27)(15,29)(16,30)(17,25)(18,26)$ |
| 2C | $2^{17},1^{2}$ | $54$ | $2$ | $17$ | $( 3, 6)( 4, 5)( 7,14)( 8,13)( 9,17)(10,18)(11,16)(12,15)(19,22)(20,21)(23,24)(25,28)(26,27)(29,30)(31,34)(32,33)(35,36)$ |
| 3A | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,11)( 8,10,12)(13,15,18)(14,16,17)(19,21,23)(20,22,24)(25,27,30)(26,28,29)(31,33,36)(32,34,35)$ |
| 3B | $3^{12}$ | $2$ | $3$ | $24$ | $( 1, 6, 3)( 2, 5, 4)( 7,11, 9)( 8,12,10)(13,18,15)(14,17,16)(19,21,23)(20,22,24)(25,27,30)(26,28,29)(31,33,36)(32,34,35)$ |
| 3C | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,30,36)(24,29,35)$ |
| 3D | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 7,14)( 2, 8,13)( 3, 9,16)( 4,10,15)( 5,12,18)( 6,11,17)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,36,30)(24,35,29)$ |
| 3E | $3^{6},1^{18}$ | $4$ | $3$ | $12$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,11)( 8,10,12)(13,15,18)(14,16,17)$ |
| 3F1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1,17, 9)( 2,18,10)( 3,14,11)( 4,13,12)( 5,15, 8)( 6,16, 7)(19,30,33)(20,29,34)(21,25,36)(22,26,35)(23,27,31)(24,28,32)$ |
| 3F-1 | $3^{12}$ | $4$ | $3$ | $24$ | $( 1, 9,17)( 2,10,18)( 3,11,14)( 4,12,13)( 5, 8,15)( 6, 7,16)(19,33,30)(20,34,29)(21,36,25)(22,35,26)(23,31,27)(24,32,28)$ |
| 3G | $3^{6},1^{18}$ | $8$ | $3$ | $12$ | $( 1,16,11)( 2,15,12)( 3,17, 7)( 4,18, 8)( 5,13,10)( 6,14, 9)$ |
| 3H | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,16,11)( 2,15,12)( 3,17, 7)( 4,18, 8)( 5,13,10)( 6,14, 9)(19,30,33)(20,29,34)(21,25,36)(22,26,35)(23,27,31)(24,28,32)$ |
| 3I | $3^{12}$ | $8$ | $3$ | $24$ | $( 1, 6, 3)( 2, 5, 4)( 7,11, 9)( 8,12,10)(13,18,15)(14,17,16)(19,30,33)(20,29,34)(21,25,36)(22,26,35)(23,27,31)(24,28,32)$ |
| 3J | $3^{12}$ | $8$ | $3$ | $24$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,11)( 8,10,12)(13,15,18)(14,16,17)(19,30,33)(20,29,34)(21,25,36)(22,26,35)(23,27,31)(24,28,32)$ |
| 3K | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,14, 7)( 2,13, 8)( 3,16, 9)( 4,15,10)( 5,18,12)( 6,17,11)(19,21,23)(20,22,24)(25,27,30)(26,28,29)(31,33,36)(32,34,35)$ |
| 3L1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1,14, 7)( 2,13, 8)( 3,16, 9)( 4,15,10)( 5,18,12)( 6,17,11)(19,30,33)(20,29,34)(21,25,36)(22,26,35)(23,27,31)(24,28,32)$ |
| 3L-1 | $3^{12}$ | $8$ | $3$ | $24$ | $( 1, 7,14)( 2, 8,13)( 3, 9,16)( 4,10,15)( 5,12,18)( 6,11,17)(19,30,33)(20,29,34)(21,25,36)(22,26,35)(23,27,31)(24,28,32)$ |
| 4A | $4^{9}$ | $54$ | $4$ | $27$ | $( 1,24, 8,30)( 2,23, 7,29)( 3,22,10,27)( 4,21, 9,28)( 5,19,11,26)( 6,20,12,25)(13,36,14,35)(15,33,16,34)(17,32,18,31)$ |
| 6A | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,18, 3,13, 6,15)( 2,17, 4,14, 5,16)( 7,12, 9, 8,11,10)(19,24,21,20,23,22)(25,35,27,32,30,34)(26,36,28,31,29,33)$ |
| 6B | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,10, 6, 8, 3,12)( 2, 9, 5, 7, 4,11)(13,16,18,14,15,17)(19,29,21,26,23,28)(20,30,22,25,24,27)(31,35,33,32,36,34)$ |
| 6C1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,31, 3,33, 6,36)( 2,32, 4,34, 5,35)( 7,19, 9,21,11,23)( 8,20,10,22,12,24)(13,26,15,28,18,29)(14,25,16,27,17,30)$ |
| 6C-1 | $6^{6}$ | $18$ | $6$ | $30$ | $( 1,33, 6,31, 3,36)( 2,34, 5,32, 4,35)( 7,21,11,19, 9,23)( 8,22,12,20,10,24)(13,28,18,26,15,29)(14,27,17,25,16,30)$ |
| 6D | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,28, 7,22,14,34)( 2,27, 8,21,13,33)( 3,29, 9,24,16,35)( 4,30,10,23,15,36)( 5,25,12,19,18,31)( 6,26,11,20,17,32)$ |
| 6E | $6^{3},2^{9}$ | $36$ | $6$ | $24$ | $( 1, 5, 3, 2, 6, 4)( 7,18, 9,13,11,15)( 8,17,10,14,12,16)(19,20)(21,22)(23,24)(25,32)(26,31)(27,34)(28,33)(29,36)(30,35)$ |
| 6F1 | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,29,17,34, 9,20)( 2,30,18,33,10,19)( 3,26,14,35,11,22)( 4,25,13,36,12,21)( 5,27,15,31, 8,23)( 6,28,16,32, 7,24)$ |
| 6F-1 | $6^{6}$ | $36$ | $6$ | $30$ | $( 1,20, 9,34,17,29)( 2,19,10,33,18,30)( 3,22,11,35,14,26)( 4,21,12,36,13,25)( 5,23, 8,31,15,27)( 6,24, 7,32,16,28)$ |
| 6G | $6^{3},2^{8},1^{2}$ | $108$ | $6$ | $23$ | $( 3, 6)( 4, 5)( 7,14)( 8,13)( 9,17)(10,18)(11,16)(12,15)(19,34,25,22,31,28)(20,33,26,21,32,27)(23,35,30,24,36,29)$ |
| 12A1 | $12^{3}$ | $54$ | $12$ | $33$ | $( 1,25,10,24, 6,27, 8,20, 3,30,12,22)( 2,26, 9,23, 5,28, 7,19, 4,29,11,21)(13,32,16,36,18,34,14,31,15,35,17,33)$ |
| 12A5 | $12^{3}$ | $54$ | $12$ | $33$ | $( 1,27,12,24, 3,25, 8,22, 6,30,10,20)( 2,28,11,23, 4,26, 7,21, 5,29, 9,19)(13,34,17,36,15,32,14,33,18,35,16,31)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F1 | 3F-1 | 3G | 3H | 3I | 3J | 3K | 3L1 | 3L-1 | 4A | 6A | 6B | 6C1 | 6C-1 | 6D | 6E | 6F1 | 6F-1 | 6G | 12A1 | 12A5 | ||
| Size | 1 | 9 | 18 | 54 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 54 | 18 | 18 | 18 | 18 | 36 | 36 | 36 | 36 | 108 | 54 | 54 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F-1 | 3F1 | 3G | 3H | 3I | 3J | 3K | 3L-1 | 3L1 | 2A | 3A | 3B | 3A | 3A | 3D | 3E | 3F1 | 3F-1 | 3C | 6B | 6B | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2B | 2B | 2B | 2A | 2B | 2B | 2C | 4A | 4A | |
| Type | |||||||||||||||||||||||||||||||
| 648.723.1a | R | ||||||||||||||||||||||||||||||
| 648.723.1b | R | ||||||||||||||||||||||||||||||
| 648.723.1c | R | ||||||||||||||||||||||||||||||
| 648.723.1d | R | ||||||||||||||||||||||||||||||
| 648.723.2a | R | ||||||||||||||||||||||||||||||
| 648.723.2b | R | ||||||||||||||||||||||||||||||
| 648.723.2c | R | ||||||||||||||||||||||||||||||
| 648.723.2d | R | ||||||||||||||||||||||||||||||
| 648.723.2e | R | ||||||||||||||||||||||||||||||
| 648.723.2f1 | R | ||||||||||||||||||||||||||||||
| 648.723.2f2 | R | ||||||||||||||||||||||||||||||
| 648.723.2g1 | C | ||||||||||||||||||||||||||||||
| 648.723.2g2 | C | ||||||||||||||||||||||||||||||
| 648.723.4a | R | ||||||||||||||||||||||||||||||
| 648.723.4b | R | ||||||||||||||||||||||||||||||
| 648.723.4c | R | ||||||||||||||||||||||||||||||
| 648.723.4d | R | ||||||||||||||||||||||||||||||
| 648.723.4e | R | ||||||||||||||||||||||||||||||
| 648.723.4f | R | ||||||||||||||||||||||||||||||
| 648.723.4g1 | C | ||||||||||||||||||||||||||||||
| 648.723.4g2 | C | ||||||||||||||||||||||||||||||
| 648.723.4h1 | C | ||||||||||||||||||||||||||||||
| 648.723.4h2 | C | ||||||||||||||||||||||||||||||
| 648.723.8a | R | ||||||||||||||||||||||||||||||
| 648.723.8b | R | ||||||||||||||||||||||||||||||
| 648.723.8c | R | ||||||||||||||||||||||||||||||
| 648.723.8d | R | ||||||||||||||||||||||||||||||
| 648.723.8e | R | ||||||||||||||||||||||||||||||
| 648.723.8f1 | C | ||||||||||||||||||||||||||||||
| 648.723.8f2 | C |
Regular extensions
Data not computed