Show commands: Magma
Group invariants
| Abstract group: | $C_3^{12}.C_2^6.D_6.(C_2\times D_4)$ |
| |
| Order: | $6530347008=2^{12} \cdot 3^{13}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $105908$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,32,18,12)(2,33,16,11)(3,31,17,10)(4,24,5,23,6,22)(7,26)(8,27)(9,25)(13,34,28,20,15,36,29,19,14,35,30,21)$, $(1,21,3,19,2,20)(4,28,27,13,5,29,25,15,6,30,26,14)(7,33,23,12,9,31,22,11,8,32,24,10)(16,36,18,34,17,35)$, $(1,7)(2,8,3,9)(4,34)(5,35,6,36)(10,15,12,13,11,14)(16,26,17,27)(18,25)(19,22,21,23)(20,24)(29,30)(31,33)$, $(1,6,29,3,5,30)(2,4,28)(7,32,35)(8,33,36,9,31,34)(10,16,22,15,19,25,12,17,24,14,20,26,11,18,23,13,21,27)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $6$: $S_3$ $8$: $D_{4}$ x 12, $C_2^3$ x 15 $12$: $D_{6}$ x 7 $16$: $D_4\times C_2$ x 18, $C_2^4$ $24$: $S_4$, $S_3 \times C_2^2$ x 7 $32$: $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3 $48$: $S_4\times C_2$ x 7, 12T28 x 6, 24T30 $64$: 16T105 $96$: 12T48 x 7, 24T143 x 3 $192$: $V_4^2:(S_3\times C_2)$, 12T86 x 6, 24T360, 24T400 $384$: 12T136 x 3, 24T1076 x 3 $768$: 12T186 x 2, 24T2202, 24T2481 $1536$: 24T3109 x 2, 24T4787 $3072$: 16T1519 $6144$: 24T8190 $12288$: 24T10366 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Degree 9: None
Degree 12: 12T137
Degree 18: None
Low degree siblings
36T104775, 36T104850, 36T106329Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed