Show commands: Magma
Group invariants
| Abstract group: | $C_3^4:S_3^3$ |
| |
| Order: | $17496=2^{3} \cdot 3^{7}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $10487$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,8,2,7,3,9)(4,24,5,22,6,23)(10,16,12,17,11,18)(13,32,14,31,15,33)(19,25,21,26,20,27)(28,36,30,34,29,35)$, $(1,19)(2,21)(3,20)(4,24,6,23,5,22)(7,26)(8,25)(9,27)(10,28,11,29,12,30)(13,32)(14,31)(15,33)(16,36,18,35,17,34)$, $(1,10,2,11,3,12)(4,9,5,7,6,8)(13,35)(14,34)(15,36)(16,33,18,32,17,31)(19,28)(20,30)(21,29)(22,25,23,27,24,26)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $3$: $C_3$ $4$: $C_2^2$ x 7 $6$: $S_3$ x 4, $C_6$ x 7 $8$: $C_2^3$ $12$: $D_{6}$ x 12, $C_6\times C_2$ x 7 $18$: $S_3\times C_3$ x 4 $24$: $S_3 \times C_2^2$ x 4, 24T3 $36$: $S_3^2$ x 6, $C_6\times S_3$ x 12 $72$: 12T37 x 6, 24T68 x 4 $108$: $C_3^2 : D_{6} $, 12T70 x 6, 12T71 $216$: 12T117 x 3, 18T94, 24T547 x 6, 24T548 $324$: $((C_3^3:C_3):C_2):C_2$, 12T130, 18T118 $648$: 18T191 x 2, 18T194, 24T1510, 24T1532, 24T1535 x 3, 36T996 $972$: 18T237 $1944$: 18T341 x 2, 24T4965, 36T2669, 36T2823, 36T2854 x 2 $5832$: 36T6486 x 2, 36T6503 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: $S_3$
Degree 4: $C_2^2$
Degree 6: $D_{6}$ x 3
Degree 9: None
Degree 12: $S_3 \times C_2^2$
Degree 18: None
Low degree siblings
36T10487 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed