Show commands: Magma
Group invariants
| Abstract group: | $C_3^{12}.C_2^6.D_6.(C_2\times D_4)$ |
| |
| Order: | $6530347008=2^{12} \cdot 3^{13}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $104850$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,12,21,29)(2,11,20,28)(3,10,19,30)(4,26,22,7,5,27,23,9)(6,25,24,8)(13,36,33,17)(14,34,31,16,15,35,32,18)$, $(1,17,13,30,27,5,2,18,15,28,26,6)(3,16,14,29,25,4)(7,23,20,36,32,11,8,22,21,34,31,12)(9,24,19,35,33,10)$, $(4,24,5,23)(6,22)(7,9,8)(10,30)(11,28)(12,29)(16,34,17,35)(18,36)(19,21,20)(25,27)(32,33)$, $(1,31,26,19,14,7)(2,33,27,21,13,8)(3,32,25,20,15,9)(4,18,29,6,16,30,5,17,28)(10,23,34,12,22,35,11,24,36)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $6$: $S_3$ $8$: $D_{4}$ x 12, $C_2^3$ x 15 $12$: $D_{6}$ x 7 $16$: $D_4\times C_2$ x 18, $C_2^4$ $24$: $S_4$, $S_3 \times C_2^2$ x 7 $32$: $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3 $48$: $S_4\times C_2$ x 7, 12T28 x 6, 24T30 $64$: 16T105 $96$: 12T48 x 7, 24T143 x 3 $192$: $V_4^2:(S_3\times C_2)$, 12T86 x 6, 24T360, 24T400 $384$: 12T136 x 3, 24T1076 x 3 $768$: 12T186 x 2, 24T2202, 24T2481 $1536$: 24T3109 x 2, 24T4787 $3072$: 16T1519 $6144$: 24T8190 $12288$: 24T10366 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $D_{6}$
Degree 9: None
Degree 12: 12T28
Degree 18: None
Low degree siblings
36T104775, 36T105908, 36T106329Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed