Show commands: Magma
Group invariants
| Abstract group: | $C_3^{12}.C_2^6.D_6.(C_2\times D_4)$ |
| |
| Order: | $6530347008=2^{12} \cdot 3^{13}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $104775$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,36,3,34)(2,35)(4,15,6,13,5,14)(7,12,9,10)(8,11)(16,19,18,20,17,21)(22,31)(23,33,24,32)(25,28,26,29,27,30)$, $(1,22)(2,24)(3,23)(4,19,6,20,5,21)(7,16,8,17)(9,18)(10,13,12,15,11,14)(25,35,27,34)(26,36)(28,32)(29,33)(30,31)$, $(1,24,15,36,26,10,3,22,14,34,25,11)(2,23,13,35,27,12)(4,31,17,7,28,21,5,33,16,9,30,20,6,32,18,8,29,19)$, $(1,3,2)(4,10,5,12)(6,11)(7,13)(8,14)(9,15)(16,17,18)(19,20,21)(22,28)(23,30,24,29)(25,33,26,32,27,31)(34,36)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $6$: $S_3$ $8$: $D_{4}$ x 12, $C_2^3$ x 15 $12$: $D_{6}$ x 7 $16$: $D_4\times C_2$ x 18, $C_2^4$ $24$: $S_4$, $S_3 \times C_2^2$ x 7 $32$: $C_2^2 \wr C_2$ x 4, $C_2^2 \times D_4$ x 3 $48$: $S_4\times C_2$ x 7, 12T28 x 6, 24T30 $64$: 16T105 $96$: 12T48 x 7, 24T143 x 3 $192$: $V_4^2:(S_3\times C_2)$, 12T86 x 6, 24T360, 24T400 $384$: 12T136 x 3, 24T1076 x 3 $768$: 12T186 x 2, 24T2202, 24T2481 $1536$: 24T3109 x 2, 24T4787 $3072$: 16T1519 $6144$: 24T8190 $12288$: 24T10366 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$, $S_4$, $S_4\times C_2$
Degree 9: None
Degree 12: $C_2 \times S_4$
Degree 18: None
Low degree siblings
36T104850, 36T105908, 36T106329Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed