Show commands: Magma
Group invariants
Abstract group: | $(C_4\times C_8).D_4$ |
| |
Order: | $256=2^{8}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $6$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $7297$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,27)(2,28)(3,26)(4,25)(5,14)(6,13)(7,23)(8,24)(9,12)(10,11)(15,29)(16,30)(17,20)(18,19)(21,32)(22,31)$, $(1,21)(2,22)(3,15,4,16)(5,18,7,11)(6,17,8,12)(9,31,10,32)(13,26,23,27)(14,25,24,28)(19,30)(20,29)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $32$: $C_2^3 : C_4 $ $64$: $((C_8 : C_2):C_2):C_2$ $128$: 16T335 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2
Degree 16: 16T171
Low degree siblings
16T658 x 2, 32T3214, 32T3215, 32T3216, 32T7128, 32T7142, 32T7145Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
2B | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(17,18)(19,20)(25,26)(27,28)$ |
2C | $2^{16}$ | $16$ | $2$ | $16$ | $( 1, 9)( 2,10)( 3,19)( 4,20)( 5,32)( 6,31)( 7,30)( 8,29)(11,27)(12,28)(13,21)(14,22)(15,23)(16,24)(17,26)(18,25)$ |
2D | $2^{12},1^{8}$ | $16$ | $2$ | $12$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,19)(10,20)(13,24)(14,23)(17,18)(21,22)(27,28)(29,30)$ |
4A | $4^{4},1^{16}$ | $4$ | $4$ | $12$ | $( 1, 4, 2, 3)( 9,20,10,19)(11,17,12,18)(25,27,26,28)$ |
4B | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,20,10,19)(11,17,12,18)(13,23,14,24)(15,21,16,22)(25,27,26,28)(29,32,30,31)$ |
4C | $4^{4},2^{8}$ | $4$ | $4$ | $20$ | $( 1, 4, 2, 3)( 5, 6)( 7, 8)( 9,20,10,19)(11,17,12,18)(13,14)(15,16)(21,22)(23,24)(25,27,26,28)(29,30)(31,32)$ |
4D1 | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1,20, 2,19)( 3, 9, 4,10)( 5,30)( 6,29)( 7,31)( 8,32)(11,26,12,25)(13,16)(14,15)(17,28,18,27)(21,23)(22,24)$ |
4D-1 | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1,19, 2,20)( 3,10, 4, 9)( 5,29)( 6,30)( 7,32)( 8,31)(11,25,12,26)(13,15)(14,16)(17,27,18,28)(21,24)(22,23)$ |
4E | $4^{8}$ | $16$ | $4$ | $24$ | $( 1,18, 2,17)( 3,11, 4,12)( 5,16, 6,15)( 7,22, 8,21)( 9,26,10,25)(13,30,14,29)(19,28,20,27)(23,32,24,31)$ |
4F1 | $4^{6},2^{4}$ | $32$ | $4$ | $22$ | $( 1, 7, 4, 6)( 2, 8, 3, 5)( 9,23,19,14)(10,24,20,13)(11,16)(12,15)(17,21,18,22)(25,31)(26,32)(27,30,28,29)$ |
4F-1 | $4^{6},2^{4}$ | $32$ | $4$ | $22$ | $( 1, 6, 4, 7)( 2, 5, 3, 8)( 9,14,19,23)(10,13,20,24)(11,16)(12,15)(17,22,18,21)(25,31)(26,32)(27,29,28,30)$ |
8A1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,17, 4,12, 2,18, 3,11)( 5,21, 8,16, 6,22, 7,15)( 9,26,20,28,10,25,19,27)(13,31,23,29,14,32,24,30)$ |
8A-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,11, 3,18, 2,12, 4,17)( 5,15, 7,22, 6,16, 8,21)( 9,27,19,25,10,28,20,26)(13,30,24,32,14,29,23,31)$ |
8B | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,17, 4,12, 2,18, 3,11)( 5,22, 8,15, 6,21, 7,16)( 9,26,20,28,10,25,19,27)(13,32,23,30,14,31,24,29)$ |
8C1 | $8^{2},4^{4}$ | $16$ | $8$ | $26$ | $( 1,25, 4,27, 2,26, 3,28)( 5,23, 6,24)( 7,14, 8,13)( 9,18,20,11,10,17,19,12)(15,30,16,29)(21,32,22,31)$ |
8C3 | $8^{2},4^{4}$ | $16$ | $8$ | $26$ | $( 1,10, 2, 9)( 3,19, 4,20)( 5,31, 8,29, 6,32, 7,30)(11,26,12,25)(13,21,23,16,14,22,24,15)(17,27,18,28)$ |
16A1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,31,17,23, 4,29,12,14, 2,32,18,24, 3,30,11,13)( 5, 9,21,26, 8,20,16,28, 6,10,22,25, 7,19,15,27)$ |
16A-1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,32,11,23, 3,30,18,14, 2,31,12,24, 4,29,17,13)( 5,10,22,28, 8,20,15,26, 6, 9,21,27, 7,19,16,25)$ |
16A3 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,24,12,31, 3,14,17,30, 2,23,11,32, 4,13,18,29)( 5,25,16, 9, 7,28,21,19, 6,26,15,10, 8,27,22,20)$ |
16A-3 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,29,18,13, 4,32,11,23, 2,30,17,14, 3,31,12,24)( 5,20,22,27, 8,10,15,26, 6,19,21,28, 7, 9,16,25)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D1 | 4D-1 | 4E | 4F1 | 4F-1 | 8A1 | 8A-1 | 8B | 8C1 | 8C3 | 16A1 | 16A-1 | 16A3 | 16A-3 | ||
Size | 1 | 1 | 2 | 16 | 16 | 4 | 4 | 4 | 8 | 8 | 16 | 32 | 32 | 4 | 4 | 8 | 16 | 16 | 16 | 16 | 16 | 16 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2B | 2A | 2B | 2B | 2B | 2A | 2D | 2D | 4B | 4B | 4B | 4C | 4C | 8A1 | 8A-1 | 8A1 | 8A-1 | |
Type | |||||||||||||||||||||||
256.507.1a | R | ||||||||||||||||||||||
256.507.1b | R | ||||||||||||||||||||||
256.507.1c | R | ||||||||||||||||||||||
256.507.1d | R | ||||||||||||||||||||||
256.507.1e1 | C | ||||||||||||||||||||||
256.507.1e2 | C | ||||||||||||||||||||||
256.507.1f1 | C | ||||||||||||||||||||||
256.507.1f2 | C | ||||||||||||||||||||||
256.507.2a | R | ||||||||||||||||||||||
256.507.2b | R | ||||||||||||||||||||||
256.507.4a | R | ||||||||||||||||||||||
256.507.4b | R | ||||||||||||||||||||||
256.507.4c | R | ||||||||||||||||||||||
256.507.4d1 | C | ||||||||||||||||||||||
256.507.4d2 | C | ||||||||||||||||||||||
256.507.4e1 | R | ||||||||||||||||||||||
256.507.4e2 | R | ||||||||||||||||||||||
256.507.4f1 | C | ||||||||||||||||||||||
256.507.4f2 | C | ||||||||||||||||||||||
256.507.4f3 | C | ||||||||||||||||||||||
256.507.4f4 | C | ||||||||||||||||||||||
256.507.8a | R |
Regular extensions
Data not computed